

ATTAINING REALISTIC SIMULATIONS OF MOBILE AD HOC

NETWORKS

THESIS

Derek J. Huber, Captain, USAF

AFIT/GCO/ENG/10-11

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GCO/ENG/10-11

ATTAINING REALISTIC SIMULATIONS OF MOBILE

AD HOC NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Derek J. Huber, BS

Captain, USAF

June 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/10-11

ATTAINING REALISTIC SIMULATIONS OF MOBILE

AD HOC NETWORKS

Derek J. Huber, BS

Captain, USAF

Approved:

//Signed// 27 Apr 2010

Maj Mark D. Silvius, PhD (Chairman) Date

//Signed// 27 Apr 2010

Dr. Kenneth M. Hopkinson (Member) Date

//Signed// 27 Apr 2010

Maj Ryan W. Thomas, PhD (Member) Date

iv

AFIT/GCO/ENG/10-11

Abstract

 Mobile Ad-hoc Networks (MANET) are comprised of wireless systems that

communicate without the assistance of centrally managed routers or base stations.

MANET research and development has increased due to computing technologies offering

smaller, faster, smarter, and more power efficient platforms to operate on. Largely the

testing and evaluation of new and existing MANET protocols has resided in simulation

environments. This is due in part to the complexities and expenses incurred when

conducting real world tests. Many researchers have come to recognize that these current

simulations tend to assume away critical components of the MANET domain. These

assumptions are made either to simplify the physical layer of the simulation so that the

protocol can be tested or out of necessity because the current simulation platforms are not

capable of providing a more realistic physical layer simulation environment. This thesis

is focused on addressing these assumptions that affect the physical layer of the MANET

protocol by gathering data in the real world and then modifying the simulation

environment to model as closely as possible to the gathered results. This modified

environment is then compared to the basic MANET simulation environment by analyzing

packet delivery and propagation effects of both models.

v

Acknowledgements

 I would like to express my sincere appreciation to all of my faculty advisors, Lt

Col Stuart Kurkowski and Maj Todd Andel, for their guidance and support throughout

the course of this thesis effort. Also I would like to extend my gratitude to Maj Mark

Silvius for filling the role as my advisor during the last few months of my thesis work

when Lt Col Kurkowski had departed AFIT.

 I of course would never have completed this work without the support of my

amazing wife and two loving daughters. Many people have sacrificed to assist me with

my thesis and I’ll always be grateful for their time and efforts.

Derek J. Huber

vi

Table of Contents

Page

Abstract .. iv

Acknowledgements ..v

Table of Contents ... vi

List of Figures .. ix

List of Tables .. xii

1. Introduction ... 1-1

1.1. Problem Statement .. 1-3

1.2. Scope ... 1-4

1.3. Organization .. 1-5

2. Background ... 2-1

2.1. Mobile Ad-hoc NETworks (MANET).. 2-2

2.1.1 Reactive Routing ... 2-4

2.1.1.1. Dynamic Source Routing (DSR) Protocol .. 2-4

2.1.2 Proactive Routing.. 2-5

2.1.2.1. Destination Sequence Distance-Vector (DSDV) Protocol 2-5

2.1.3 Challenges ... 2-6

2.2. Network Simulation Environments... 2-7

2.2.1 Network Simulator version 2 (NS-2) .. 2-8

2.2.2 MANET Simulations Current State .. 2-10

2.3. Click Modular Software Architecture ... 2-14

2.3.1 Clicky simulation environment ... 2-15

2.3.2 MANET Protocols implemented within Click ... 2-16

2.3.2.1. Reactive Protocols .. 2-17

2.3.2.2. Proactive Protocols ... 2-18

2.4. Summary ... 2-19

3. Methodology ... 3-1

3.1. Problem Definition.. 3-1

3.1.1 Goals and Hypothesis ... 3-1

3.1.2 Approach ... 3-2

3.1.3 Design ... 3-2

3.1.4 Services ... 3-3

3.1.5 Boundaries .. 3-4

3.1.6 Workload Parameters .. 3-5

vii

3.1.7 System Parameters .. 3-6

3.1.8 Performance Metrics ... 3-7

3.1.9 Factors ... 3-8

3.2. Summary ... 3-10

4. Results and Analysis ... 4-1

4.1. Evaluation Technique ... 4-1

4.2. Experimental Design ... 4-1

4.3. Experiment Procedures ... 4-2

4.3.1 Physical ... 4-2

4.3.1.1. Click Installation ... 4-3

4.3.1.2. Physical Test Bed Data Gathering Experiments 4-5

4.3.1.2.1 Open Field Test Bed Experiment .. 4-5

4.3.1.2.2 Indoor Obstruction Test Bed Experiment ... 4-6

4.3.2 Simulation ... 4-8

4.3.2.1. Propagation Simulations ... 4-8

4.3.2.2. Traffic Simulations ... 4-10

4.4. Analysis... 4-12

4.4.1 Propagation Simulations ... 4-12

4.4.2 Traffic Simulations ... 4-17

4.4.2.1. TCP Traffic Analysis .. 4-17

4.4.2.1.1 TCP Basic (small) and APProxy simulation experiments 4-18

4.4.2.1.2 TCP Basic (large) and APProxy simulation experiments 4-25

4.4.2.2. CBR Traffic Analysis ... 4-27

4.4.2.2.1 CBR Basic (small) and APProxy simulation experiments 4-27

4.4.2.2.2 CBR Basic (large) and APProxy simulation experiments 4-33

4.4.2.3. Additional Traffic Analysis .. 4-35

4.4.3 Impact and Contributions .. 4-35

4.5. Summary ... 4-37

5. Conclusions and Recommendations .. 5-1

5.1. Conclusions of Research ... 5-1

5.2. Future Research .. 5-2

Appendix A: Acronyms List .. A-1

Appendix B: DSDV Click Configuration Code ..B-1

Directed Graph .. B-1

Code for the Physical Nodes ... B-1

Appendix C: DSR Click Configuration Code ...C-1

Clicky generated Directed Graph.. C-1

Code for the Physical Nodes ... C-1

viii

Appendix D: NS-2 Simulation scenarios (TCL scripts) .. D-1

TCPegg.tcl .. D-1

CBRegg.tcl .. D-9

APProxy.tcl ... D-18

Initialize.tcl ... D-19

WriteOutput.tcl ... D-20

Simulate.tcl ... D-21

Bibliography ..BIB-1

ix

List of Figures

Page

Figure 1-1. Example of an infrastructure based network ... 1-2

Figure 1-2. Example of an ad-hoc based network ... 1-2

Figure 2-1. OSI Reference Model (URL:

http://upload.wikimedia.org/wikipedia/commons/2/2b/Osi-model.png) 2-2

Figure 2-2. NS-2 Simulation Environment NAM Graphical Display 2-9

Figure 2-3. A simple Click router configuration: reads packets from the network device,

counts the packets, and then discards them ... 2-14

Figure 2-4. Clicky’s simulation environment GUI .. 2-16

Figure 2-5. Grid/Roofnets Link Map of MIT with nodes and link data rate 2-18

Figure 3-1. Design of Simulation Environment equated to Physical Environment 3-3

Figure 3-2. System Under Test: NS-2 MANET Simulation Environment 3-5

Figure 3-3. APProxy algorithm: 1) angle calculation 2) angle mapped to gain value 3)

transmission power is modified by gain value [20] ... 3-10

Figure 4-1. Updated simulation environment design ... 4-2

Figure 4-2. a. Satellite image of outdoor experiment location (©2010 DigitalGlobe) and

b. Open Field Experiment (measurements in feet) .. 4-6

Figure 4-3. a. Satellite image of Indoor experiment location (Jarvis Gym) (© GeoEye)

and b. Indoor Obstruction Experiment results ... 4-7

Figure 4-4. Diagram of shadowing.tcl script – top graph is the probability of receiving a

packet and lower graph is a 2D area plot of the propagation pattern [20] 4-10

Figure 4-5. TCPegg.nam – TCP traffic is being sent to all nodes one at time 4-11

Figure 4-6. Two Ray ground circular shaped propagation – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node 4-13

Figure 4-7. Shadowing circular shaped propagation – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node 4-14

x

Figure 4-8. APProxy propagation based on two ray ground – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node 4-15

Figure 4-9. APProxy propagation based on shadowing – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node 4-15

Figure 4-10. Two ray ground propagation model with the NS-2 Basic circular pattern

(red) overlaid onto APProxy egg pattern (blue) .. 4-16

Figure 4-11. Two Ray Ground propagation model with APProxy egg pattern (blue)

overlaid onto the NS-2 Basic circular pattern (red) ... 4-16

Figure 4-12. Lines of interest from an NS-2 Trace file ... 4-18

Figure 4-13. Line graph of packet delivery using the Shadowing APProxy propagation

pattern .. 4-20

Figure 4-14. Line graph of packet delivery using the Shadowing Basic (small) shaped

propagation pattern .. 4-20

Figure 4-15. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model... 4-21

Figure 4-16. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model... 4-22

Figure 4-17. Line graph of packet receptions between all four TCP simulation runs ... 4-23

Figure 4-18. Basic pattern overlaid onto APProxy pattern (same as Figure 4-10) 4-24

Figure 4-19. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model... 4-26

Figure 4-20. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model... 4-27

Figure 4-21. Line Graph of packet delivery using the Shadowing Egg shaped propagation

pattern .. 4-29

Figure 4-22. Line Graph of packet delivery using the Shadowing Circular shaped

propagation pattern .. 4-29

Figure 4-23. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model... 4-30

xi

Figure 4-24. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model... 4-31

Figure 4-25. Line graph of Packet reception between all four CBR simulation runs 4-32

Figure 4-26. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model... 4-34

Figure 4-27. Line graph of packet reception between Basic and APProxy patterns using

Shadowing model... 4-35

xii

List of Tables

Page

Table 3-1. Factors that influence the system and its outputs ... 3-8

Table 4-1. Propagation parameters .. 4-12

Table 4-2. TCP Packet Delivery Comparison between APProxy and Basic (small)

propagation patterns using either Two Ray ... 4-19

Table 4-3. TCP Packet Delivery Comparison between APProxy and Basic (large)

propagation patterns using either Two Ray Ground or Shadowing models 4-25

Table 4-4. CBR Packet Delivery Comparison between APProxy and Basic (small)

propagation patterns using either Two Ray Ground or Shadowing models 4-28

Table 4-5. CBR Packet Delivery Comparison between APProxy and Basic (large)

propagation patterns using either Two Ray Ground or Shadowing models 4-33

1-1

ATTAINING REALISTIC SIMULATIONS OF MOBILE

AD HOC NETWORKS

1. Introduction

 Wireless (a.k.a. mobile) communications have become ingrained in day to day

operations of both personal and professional arenas within the modern world.

Computational mobility is becoming one of the key factors in design and purchase of

Information Systems. Wireless communications in operation today follow closely to

Moore’s Law by getting faster, smaller, and cheaper roughly every two years. One

example of mobility as a driving force in today’s computing environment is the fact that

laptop sales have overcome desktop PC sales [2]. This is attributed primarily to users and

businesses wanting the flexibility of a portable computing system. There exist many

additional examples of wireless communication devices gaining popularity among users

such as cell phones, in particular “smart phones” that provide data communication in

addition to voice.

 These devices that communicate wirelessly require a network topology to support

the varied communications that propagate between devices. This topology can adhere to

one of three different main approaches, either an infrastructure based approach, an ad-hoc

approach, or a hybrid of the two. Currently most commercial wireless networks, as well

as wired networks, follow an infrastructure approach, which means there is a central

node(s) or base station(s) that performs the routing of packets internally and externally to

the network. In a wireless network this is called an Access Point (AP) or wireless router,

this device makes the routing decisions for the nodes connected to it. Figure 1-1

illustrates a basic infrastructure based wireless network. The nodes are configured to send

1-2

their traffic to the central management node (a.k.a. AP) where it will then route the traffic

accordingly.

Figure 1-1. Example of an infrastructure based network

 Ad-hoc networks differ significantly from infrastructure based networks as stated

previously since there is no central routing node in the topology. Figure 1-2 illustrates a

basic ad-hoc network where each node can pass traffic with its peers as long as they are

within each other’s coverage areas (red dashed circles). In this environment every node

will require a protocol that can effectively discover routes and then transmit packets

without any overarching administration.

Figure 1-2. Example of an ad-hoc based network

 Only a few commercial applications exist today that follow a Mobile Ad-hoc

NETworking (MANET) approach. One such example is from the Swedish company

1-3

TerraNet that is using Peer-to-Peer technology to allow users to communicate directly

between two or more cellular handsets without the need for a base station [5]. Mobile ad-

hoc networking, even with limited acceptance in commercial applications to date, has

been utilized quite heavily in the research community and is presently being pursued as a

viable option for future wireless communication applications. MANET technology is also

being researched for possible application into military wireless communications.

MANETs are studied because of the many potential benefits that can be extracted from

communication systems when there is greater mobility and smaller infrastructure

footprints. This will drive a higher demand for MANETs in the computing world of the

near future.

1.1. Problem Statement

 There are multiple scenarios where MANETs can prove to be a vital

communications resource. One possible scenario is after a disaster, natural or man-made,

the need for communications between emergency responders, government(s) officials,

military, and victims is imperative. In large scale disasters the communications grid can

be damaged or even taken completely offline, forcing a desperate need for

communications and the ability to communicate without a communication infrastructure.

 MANETs offer the ability to deploy wireless nodes that can efficiently and

effectively route communication traffic. These nodes can be placed in responders’

vehicles and even carried by individuals. They can be deployed on Unmanned Aerial

Vehicles (UAV) and flown over specific areas where communication is vital to the rescue

efforts. Then as rescue teams and units move throughout an area trying to find survivors

they will be able to provide Situational Awareness (SA) to their counterparts through

these wireless nodes.

1-4

 In this scenario and multiple others that MANETs can be utilized, they all rely on

a MANET protocol’s reported capabilities. A protocol’s capabilities and specifications

are typically acquired through simulation experiments that help to determine key aspects

of the protocol such as the effective bandwidth, overhead packet rate, latency, range, etc.

The protocol’s capabilities are then used when a MANET designer attempts to deploy the

wireless nodes. It is important that the designer realizes the real world capabilities

because the deployment of these nodes will affect the traffic patterns and overall

communication capability of the MANET. In the previously mentioned scenario if the

designer assumes the simulated capabilities of the MANET are correct and then deploys

too few or too many nodes it could jeopardize the overall rescue efforts by limiting

communication between responders. This thesis is focused on addressing poor

assumptions that affect the physical layer of the MANET protocol by gathering data in

the real world and then modifying the simulation environment to model as closely as

possible to the gathered results.

1.2. Scope

 The MANET community has developed numerous protocols and their

performance and reliability are constantly being tested and evaluated. These protocol

evaluations need to be as realistic as possible in order to provide useful feedback to the

developers. This research is focused on the development of a simulation environment that

is able to accurately model real world characteristics of a MANET protocol. This work

sets the stage for future development in this area. Researchers can use this thesis to assist

their development of robust simulations that conform to a realistic implementation of

their specified protocol.

1-5

 There are many different approaches and techniques that can be explored in order

to investigate the problem with current MANET simulations. This work focuses on

several assumed axioms that most MANET simulations use to simplify the physical layer

of the simulation environment, as identified by Kotz et al [26]. For this thesis, the

simulation environment was restricted to the Network Simulator version 2 (NS-2)

simulation engines to evaluate these assumptions. This work does not intend to address

all possible scenarios that can arise in a MANET implementation and is instead intended

to be the groundwork for a more robust simulation environment at the physical layer

level.

1.3. Organization

 This chapter provided a general overview of the research conducted in this thesis

and the main problem in the MANET field that it attempts to address. Chapter Two

describes the general workings of MANETs and discusses two different types of

protocols. It also discusses in detail the problems facing MANET simulations particularly

modeling the physical layer. It concludes by reviewing the Click modular software

architecture that is used as the test bed’s backbone in this thesis. Chapter Two is intended

for those with a general knowledge of MANETs and is written to provide background on

the current MANET research projects and the problems that this thesis is aimed at

solving. Chapter Three covers the experimental methodology and the overall system that

was developed to create realistic physical layer MANET simulations. Chapter Four

documents the performance of the realistic simulation environment to the basic

simulation environment. Chapter Five summarizes the work and results that were

accomplished in this thesis and concludes by offering recommendations for further

research and development.

2-1

2. Background

 This chapter is devoted to the background of Mobile Ad-hoc NETworking

(MANET) design, protocols, and simulation techniques. In addition to the background on

MANETs and network simulation, the Click Modular Software Architecture will be

introduced [24]. The capabilities of Click are discussed along with previous work

utilizing Click for MANET protocol development and testing.

 This thesis focuses on the physical layer representation within MANET

simulations and the assumptions that are made in these simulation environments. Since

MANET technology can be done on multiple platforms and through various techniques

and tactics a general MANET overview is required. The mechanisms used in creating

MANETs are covered in the first section of this chapter along with the general workings

of two MANET protocols, Dynamic Source Routing (DSR) and Destination Sequence

Distance-Vector (DSDV). These two protocols are used in this research so a basic

understanding is needed. Next the ability to simulate MANETs is investigated since this

is where the initial problems are introduced that this work addresses. Within this section,

the numerous studies on MANET simulations that have been done in regards to their

strengths and weaknesses are reviewed. Finally, the Click Modular Software Architecture

has been developed as the backbone to the physical test bed. The Click architecture is

discussed and how its granular design allows for MANET protocol implementation. In

addition to the workings of Click, previous research is analyzed that has been conducted

with the Click framework to develop MANET protocols.

 These various topics are discussed in this chapter because an understanding of the

workings of a MANET is required to realize the contributions of this thesis work. When

viewing the Open System Interconnection (OSI) Reference Model, Figure 2-1, the

2-2

MANET protocols discussed in the next few sections operate within layers 2-4, but as

with all protocols they depend heavily on a physical layer that is functioning correctly.

This thesis work is focused on the physical layer and the simulation environment’s ability

to model this layer as close to the real world as possible.

Figure 2-1. OSI Reference Model (URL:

http://upload.wikimedia.org/wikipedia/commons/2/2b/Osi-model.png)

2.1. Mobile Ad-hoc NETworks (MANET)

 Ad-hoc networking concepts have been present throughout history in most

communications. The ability to transmit messages by passing them through multiple

nodes is not unique to the computing domain of today’s modern world. Governments and

militaries have experienced the benefits of relaying messages along multiple paths and

messengers from source to destination. Naturally when a new technology is introduced

these same benefits are expanded upon and yield even greater benefits. Ad-hoc

networking/routing began its initial development within the computing domain, in

particular the wireless spectrum, when ALOHAnet in 1970 was developed to allow the

University of Hawaii to link up with the many islands it had facilities on. “Even though

ALOHAnet was originally implemented for a fixed single-hop wireless network, the

2-3

basic idea was compelling and applicable to any environment where access to a common

resource had to be negotiated among a set of uncoordinated nodes” [30]. This opened the

door for future research into Ad-hoc technologies and concepts. Ad-hoc networks are

today classified as self-organizing and adaptive networks, which means they can create

and dissolve networks without the need for system administration or more importantly

fixed infrastructure [39].

 The Internet Engineering Task Force (IETF) created a working group, Mobile ad-

hoc networks, in order to standardize the many protocols and specifications that were

emerging in this domain. Their purpose is stated as, “…to standardize IP routing protocol

functionality suitable for wireless routing application within both static and dynamic

topologies with increased dynamics due to node motion or other factors” [29]. They have

identified that there are two different categories that most MANET routing protocols can

be classified under: Reactive MANET Protocol (RMP) and Proactive MANET Protocol

(PMP). The working group currently has multiple drafts and Request For Comments

(RFC) out in the community for a variety of protocols and specifications that fall under

these two tracks. The working group is also currently pursuing two specific protocols,

Dynamic MANET On-demand (DYMO) and Optimized Link State Routing Protocol

version 2 (OLSRv2), an RMP and PMP respectively [29]. It is yet to be seen if these two

protocols will become the official IETF standards and consequently gain acceptance and

commercial production within the industry.

 Other MANET publications and groups have divided the protocols into two

groups as well, commonly referred to as On-Demand Routing Protocols or Table-Driven

Routing Protocols, respectively matching to RMP and PMP [30]. There are some

2-4

protocols that fall under a hybrid of the two classifications, but most tend to follow one or

the other. Since the work in this thesis uses just one protocol from each track the small

differences a hybrid protocol offers is not discussed.

2.1.1 Reactive Routing

 Reactive MANET protocols adhere to the principle that due to the mobility of the

wireless nodes, all possible routes within the network do not need to be discovered only

when traffic needs to be sent between nodes. The goal of this is to decrease bandwidth

usage by the nodes when sending administrative packets. There is no need to send

periodic routing updates throughout the network as seen with Proactive Routing [30].

There are several protocols within the MANET community that adhere to a Reactive

approach such as: Dynamic Source Routing (DSR) [20], Ad-hoc On-Demand Distance

Vector (AODV) [37], Temporally Ordered Routing Algorithm (TORA) [33], and DYMO

Routing [12]. The DSR protocol is discussed in the following section.

2.1.1.1. Dynamic Source Routing (DSR) Protocol

 DSR was developed to be a mobile ad-hoc protocol with the initial design and

concepts published in 1994. It has gone through numerous revisions and was most

recently submitted in 2007 to the IETF as The Dynamic Source Routing (DSR) Protocol

for Mobile Ad-hoc Networks for IPv4 (RFC 4728). The protocol is designed to be

“…completely self-organizing and self-configuring,” which is the underlying principle of

a MANET protocol [20]. The designers wanted to keep the protocol efficient and reduce

the amount of overhead packets needed to pass traffic between nodes. The RFC claims

that DSR can be used in networks comprised of 200 nodes and work reliably even with

high rates of mobility within that network. There are two main mechanisms within DSR

that allow the protocol to operate within the ad-hoc domain, Route Discovery and Route

2-5

Maintenance. In fact most MANET protocols, reactive or proactive, utilize these two

mechanisms in order to learn about the network. Route Discovery allows a node to send

traffic to another node when the source node does not have a route stored in its route

cache. Route Maintenance is utilized in DSR MANETs to ensure existing routes within a

node’s route cache are still viable.

2.1.2 Proactive Routing

 Proactive Routing differs from Reactive in that every node within the network

will first discover every possible route in the network before passing traffic. These routes

are stored within a routing table on each node. They usually resemble a wired network

routing protocol because they attempt to route packets along the optimal path [36]. In

order to remain self-configuring and self-organizing, most PMPs utilize two mechanisms,

Route Discovery and Route Maintenance, in order to remain self-configuring and self-

organizing. The PMP used in this thesis work is the Destination Sequence Distance-

Vector Protocol (DSDV) [37], which does not officially state that it utilizes Route

Discovery and Route Maintenance, but it does however implement these two

mechanisms.

2.1.2.1. Destination Sequence Distance-Vector (DSDV) Protocol

 Destination Sequence Distance-Vector was developed in 1994 for use in

MANETs by Charles Perkins and Pravin Bhagwat. This was one of the first MANET

protocols developed and the authors pulled most of the techniques and mechanisms from

the wired protocols in use at that time. The main algorithm it is based on is the

Distributed Bellman-Ford (DBF), “…where each node maintains a table that contains the

shortest distance and the first node on the shortest path to every other node in the

network” [30]. Unlike DSR there is no overarching attempt to limit the amount of

2-6

overhead packets being sent across the network. The Route Discovery process in DSDV

occurs for each node once it comes online. The newly “up” node will advertise its current

routing table by broadcasting it to all of its neighbors within its wireless coverage area.

Just as in DSR the Route Maintenance process occurs when a node/link has gone down.

The big difference is that every node in the MANET is notified of the broken link and

their routing tables are updated and broadcasted throughout the network.

2.1.3 Challenges

 There are multiple challenges that every MANET protocol faces that

infrastructure based topologies don’t face. Some are protocol specific, but most are due to

the basic characteristics of a MANET. This section only summarizes these challenges and

does not attempt to derive any of the underlying problems. They are reviewed to show

that other factors are affecting MANETs in addition to the problems this thesis addresses.

The first and foremost challenge is due to the operation of a network in the radio

spectrum. Radio communications are susceptible to a lot more environmental influences

than wired communications. Numerous studies have shown that wind, temperature,

humidity, etc. all impact radio transmissions in either positive or negative trends. This

thesis is utilizing hardware that operates in the 2.4GHz band, which in the US is an open

frequency that anyone can utilize without a license. With the increase of wireless nodes

utilizing the open band, it becomes saturated with traffic that distorts or blocks MANET

transmissions [39].

 Another challenge facing MANET communications is energy efficiency. Since

MANETs are inherently formed by mobile nodes that are usually operating on battery

power alone, the active role each node plays in routing traffic now has a significant

impact on the uptime of each node. Transmitting and receiving packets wirelessly

2-7

requires a great deal of power and can quickly reduce the amount of time a node can stay

online while on battery power. This is a problem in general to all wireless topologies, but

MANET nodes consume even more power since they are utilized by their peers to route

traffic throughout the network [39].

 Lastly every MANET faces higher security risks either through malicious or

poorly configured nodes. The fact that MANET traffic is dependent on other peer nodes

for routing to the end destination introduces the potential for man in the middle attacks.

This means a malicious node could easily alter packets without the sender or destination

node realizing it. MANETs also face risks in poorly configured nodes because nodes that

do not accurately display correct routing information can increase congestion and result

in undeliverable packets if the poorly configured node advertises a route that doesn’t

exist.

2.2. Network Simulation Environments

 Network topologies have been simulated since their inception in the computing

domain. Simulation is a useful process to undertake when a new protocol is being

developed, but it is also beneficial to simulate existing protocols when implemented in

new and original topologies. Simulation in a computer domain is primarily done in

environments that use discrete-event methods to simulate behavior of a network. This

means the observer is only concerned with the system being simulated at discrete points

in time [18]. Most simulation engines were first designed to simulate wired networking

topologies, but now the major simulators offer the capability to simulate wireless

networks.

 The most notable simulation engines that are used widely in research and

commercial endeavors are: Network Simulator version 2 (NS-2) [19], Optimized

2-8

Network Engineering Tools (OPNET) [33], and Global Mobile Information Systems

Simulation Library (GloMoSim) [30]. NS and GloMoSim are both provided as open use

software to researchers, whereas OPNET is a commercial simulation engine. While all of

these engines can simulate MANETs, the one used in this thesis work is NS-2 because of

the ability to model the physical layer within NS-2.

2.2.1 Network Simulator version 2 (NS-2)

 NS-2 is a discrete simulator that was developed to assist researchers doing work

with computer networks. It started as a spinoff to the REAL Network Simulator in 1989

and has undergone three major versions [19]. Each of the version changes do not allow

for simple backwards compatibility of older code and scenario files so a lot of users tend

to utilize older versions instead of updating NS-2 to the latest version. The code utilized

in this thesis work requires the use of NS-2 up to patch level 34. The following

paragraphs discuss features of NS-2 that may or may not be found in the other versions.

NS-2 is founded on two programming languages Tcl and C++. C++ programming

knowledge is not needed unless new functionality is to be added. NS-2 also comes

prepackaged with a variety of existing classes and configurations that can be used to

construct various scenarios. Tcl programming knowledge, however, is required in order

to generate even basic scenario files. Scenario files are Tcl scripts that simulate a simple

network topology. These scripts can then be run within the NS-2 simulation engine,

which has integrated the Network Animator (NAM) for graphical feedback. There are

numerous example configurations in NS-2 including MANET protocol scenario files

containing DSDV implementations [19].

 Figure 2-2 shows a screen capture of an example Tcl script running within NS-2.

This example came from Marc Greis’s online tutorial and is composed of four nodes with

2-9

node 2 acting as a router for the other three nodes [19]. It will only forward data from

node 0 and node 1 onto node 3. It also illustrates a basic queue within NS-2 by showing

the red and blue packets queuing up on node 2.

Figure 2-2. NS-2 Simulation Environment NAM Graphical Display

 NS-2, like the other network simulators, models the wireless radio propagation of

each node using the Friss-space (a.k.a. Free space) attenuation () at near distances and

approximates to Two Ray Ground () at far distances. The approximation assumes

specular reflection off a flat ground plane [15]; meaning NS-2 assumes there are no

signal obstructions. These different propagation models are used by NS-2 to determine if

the packet is successfully received by the destination node. In addition to the propagation

models, NS-2 utilizes an omni-directional antenna that has unity gain in all directions

[15]. This means the propagation coverage area is represented as a perfect circle

surrounding the wireless node at a radius specified by transmission power, transmit gain,

receive gain, receive threshold, wavelength, frequency, and other factors. NS-2 does offer

another propagation model, Shadowing, which was added to its base installation to

provide a more realistic radio model. The shadowing model is used to apply fading

effects to the propagation models since the received power at a certain distance in the

2-10

physical world is a random variable due to multipath propagation effects. The shadowing

model still assumes a perfect circle as the other two models do, but it extends it by stating

that “…nodes can only probabilistically communicate when near the edge of the

communication range” [15]. The shadowing model does offer a more realistic approach

to MANET simulation since the radio signal will drop off depending on the user supplied

value, but it still only models an antenna coverage pattern of a circle.

2.2.2 MANET Simulations Current State

 The Mobile Ad-hoc research community has been simulating different MANET

protocols for quite some time, mainly because it requires an extensive amount of

resources to build actual MANETs for experimentation. A problem with these

simulations is that they make numerous assumptions to simplify the simulation

environment. Not only are numerous assumptions made, but the simulations that are run

are not rigorous in their methodology, or in their analysis. “An opinion is spreading that

one cannot rely on the majority of the published results on performance evaluation

studies of telecommunication networks based on stochastic simulation, since they lack

credibility” [33].

 These assumptions and lack of rigor are the main reason the results of the

simulations are not trustworthy. Assuming critical characteristics of a protocol are

constant or not a factor in the outcome renders the results invalid. Without accurate

simulations, protocol development and testing has limited effectiveness since only a

subset of the protocol’s attributes is evaluated. The MANET community needs reliable

simulations that can model real world attributes. New protocols are being developed and

advertised as secure and reliable but the simulation models are unable to provide an

accurate depiction of how the new protocol will actually perform, “…according to the

2-11

feeling of the MANET community, there is an important lack of real experiments that

prove the feasibility of wireless protocols” [11].

 Cavilla et al. have identified that most MANET simulations are not modeled for

indoor environments thus ignoring the effects that an indoor environment may introduce

to a MANET. Most notably they identify that indoor environments are smaller than

traditional outdoor MANET test environments. These smaller environments usually

contain multiple obstacles to node mobility and radio propagation [10] .

 There are also six axioms that are accepted and utilized in today’s MANET

simulations [26]. Though widely held, they are the source of certain problems in MANET

simulations. Each of these axioms is implemented in the basic propagation models within

NS-2 as well as the other network simulators. These axioms are also grounded very

heavily in the physical layer since they are all concerned with the MANET’s ability to

transmit packets effectively between nodes. In the physical world these axioms are

handled by the radio and hardware of each node, but in simulation, NS-2 has to handle

these physical layer axioms.

 Axiom 0 is that the world is flat, meaning that all of the nodes are on the same

horizontal plane. This introduces simulation errors because link quality and signal

strength varies depending on the elevation of each node. If the elevation of the node is

different, then the signal will be affected accordingly. This axiom is also important due to

line-of-sight (LOS) propagation that affects the wireless signal’s transmission. LOS is

affected by the topography of the land in outdoor environments. It is also affected by

obstructions such as trees, buildings, or other objects in between the wireless nodes in

both outdoor and indoor environments. While most MANETs can deliver traffic with a

2-12

few obstructions in a small proximity, the simulations that are done routinely assume that

only open air exists between nodes. This assumed axiom is accepted by most of the

MANET community because the belief of assuming the world is flat will not affect

MANETs since they usually have a small coverage area. Kotz et al. state that there are

two things a MANET researcher must do in order to account for this axiom within their

MANET simulations: “a) use a detailed and realistic terrain model, accounting for the

effects of terrain, or b) clearly condition their conclusions as being valid only on flat,

obstacle-free terrain” [26]. NS-2 simulations implement this axiom because NS-2

currently only offers 2D terrain support meaning that all nodes are on the same horizontal

plane. There is however some research projects that have extended NS-2’s ability to

include the Z axis by implementing a Fresnel zone base propagation model [15].

 Axiom 1 is that a radio’s transmission area is circular, which never occurs in the

physical world since each antenna has a different coverage area based on environmental

factors and antenna construction. Also each MANET protocol will affect the coverage

area of a node differently due to the number of nodes, traffic overhead, and other factors

that the protocol introduces to the transmission area. Axiom 2 is that all radios have

equal range, which ties in very closely with axiom 1. In fact, since the coverage area is

not circular each radio has a different range based on environmental factors and the angle

between the sender and receiver antennas. Just as in axiom 1, the MANET protocol in use

will affect the range of the radios even if they are relatively the same [26]. NS-2 adheres

to these two axioms because all of the propagation models (Free space, Two Ray Ground,

Shadowing) simulate the radio’s coverage/transmission area as an ideal circle [16]. There

is no disparity between the ranges of the radios in the models other than applying the

2-13

fading effects of the shadowing model. Even these fading effects will be applied

consistently to all nodes in the simulation so that there is no distinct difference between

them.

 Axiom 3 is if I can hear you, you can hear me (symmetry). This is a poor

assumption since the entire premise of a MANET protocol is that the nodes are mobile.

Just because node A can send to node B at one instant in time does not mean that node B

can send to node A after the message is received since the nodes may have been traveling

in opposite directions and may now be out of the coverage area [26].

 Axiom 4 is if I can hear you at all, I can hear you perfectly, which is an optimistic

assumption since most transmissions that occur between two nodes on the fringes of their

coverage areas will experience occasional dropped packets or bit errors. This means they

can still communicate sporadically, but not without error [26].

 Finally, axiom 5 states that signal strength is a simple function of distance. It is

true that signal fading is well understood, but the equation usually employed does not

necessarily represent environmental factors that increase or decrease the radio’s range

such as: obstruction, reflection, refraction, and scattering [26]. This axiom ties back into

axiom 0, in that the environment will play a key role in affecting the wireless

transmission. This assumption also ties back into axiom 1 in that the coverage area is

equal at all angles around the node and the strength of the signal will decrease only

because of distance.

 Simulations are useful but in their current state they have limited benefits for

testing and evaluating the various MANET protocols. The community has realized that

2-14

key environmental and technical aspects have yet to be accurately modeled in any of the

major simulation engines such as OPNET Modeler, NS-2, or GloMoSim.

2.3. Click Modular Software Architecture

 In addition to the creation of a simulation environment for MANET protocols, the

Click software architecture has been utilized within each of the nodes in the physical test

bed. The Click software architecture was developed in the Computer Science department

at the Massachusetts Institute of Technology (MIT). It was developed to be a “flexible,

modular software architecture for creating routers” [23]. Since each node in a MANET

needs to essentially perform the same actions of a router, Click should be able to mimic a

MANET protocol. The Click architecture allows for flexible and detailed node

development and packet handling because each Click router/node is built with fine-

grained components called elements.

 When developing a node, different elements are selected and then connected in a

directed graph. In addition, new elements can be created by the developer and integrated

into the already existing elements. The creators envisioned that each element would

represent a simple routing task, such as decrementing an IP packet’s time-to-live field

[24]. Figure 2-3 shows a very basic Click configuration, depicted as a directed graph with

the three elements that comprise it. In general all it does is read packets from the network

(FromDevice(eth0)), counts them (Counter), and then throws them away (Discard) [24].

Figure 2-3. A simple Click router configuration: reads packets from the network device,

counts the packets, and then discards them

2-15

 Click was developed to operate as an extension to the Linux kernel, with each of

the elements being a C++ object. Each connection between the elements represents paths

for packets to travel, and Click supports two different kinds of connections, push and

pull. Most software routers implement push connections since the packets start at the

source element and are then passed to each corresponding element along the directed

graph. Pull connections are the opposite of push since the destination element starts the

packet transfer by asking the source element to send it a packet. The developers made it

illegal to have a connection between a push and pull port, each connection must be made

between two ports of the same type. Click was also developed with agnostic ports as well,

which will act as a push or pull port depending on which type of port they are connected

to, which thus simplifies some of the node development. The only way to allow packet

flow between opposing ports is to utilize a queue element. The queue element has a push

input port and a pull output port thus allowing for packets to be stored from the push

connection and then later retrieved from the pull connection [24].

 There are multiple elements within the Click distribution, all performing various

functions usually as granular as possible so that the design remains modular. One other

benefit is that Click elements can be written and integrated into configurations with

existing elements thus making the code reusable.

2.3.1 Clicky simulation environment

 As with most software architectures that are used to develop routers and other

network objects it is useful to simulate multiple occurrences. The developers of Click

created a simulation environment, Clicky, that assists in Click development. It was

developed to graphically display the directed graphs that result from the Click

configuration code. Figure 2-4 shows the Graphical User Interface (GUI) of Clicky. It can

2-16

display the configuration code as a directed graph, as seen in Figure 2-4, or as the actual

Click code. The Click configuration code can also be run within Clicky to view packet

traversal through the code. Clicky can also read and write to handlers in live

configurations. This thesis work utilized Clicky to generate directed graphs and assist in

configuration code development but not as a simulation environment.

Figure 2-4. Clicky’s simulation environment GUI

2.3.2 MANET Protocols implemented within Click

 There have been multiple research projects within the Click community to

develop Click configurations for MANET protocols. The most prominent project is the

“MIT Roofnet 802.11b/g mesh network” also known as the “Grid ad-hoc networking

project” [36]. Other work in this area includes multiple Master’s Theses (reviewed in the

next sections), which develop the Click configuration code and then correlate it against an

alternate implementation of the MANET protocol [8][6][14][22][40]. Since this thesis

work utilizes DSR and DSDV, the work on those two protocols are the most meaningful,

but other prior work in this area has provided benefits to the work done in this thesis.

2-17

2.3.2.1. Reactive Protocols

 There are a few research projects that have been conducted to create Click

configurations for RMPs. Bart Braem completed his Master’s Thesis on implementing an

Ad-hoc On-Demand Distance Vector (AODV) in Click [8]. His work includes the

development of new Click elements and the integration of those elements with other

existing Click elements into an AODV Click configuration. The configuration code was

adapted to work within NS-2 by following Neufeld et al. [32] work. He then evaluated

his implementation by comparing his AODV implementation to an open implementation

of AODV, AODV-UU, which was developed at Uppsula University. His results

demonstrated that his implementation of AODV within Click performed better when the

simulations were small in scale. Once they were scaled up, AODV-UU performed better

since it is an NS standard protocol, and NSClick added overhead to each node being

processed. His thesis did contain all of his Click developed configuration code as well

[8].

 Doshi et al. created a Click configuration file for DSR in order to create a

minimum energy aware MANET protocol that tried to limit the amount of power

required to route traffic. His paper has a detailed directed graph of his implementation

along with the five main packet headers that were used in his DSR implementation. His

conclusion, based off of testing a Click DSR implementation against a minimum energy

Click DSR implementation, was that the routing protocol’s energy consumption can be

reduced by a factor of three times at low speeds and seven to eleven times at high speeds.

He did not include any code or example configurations within his submitted paper for

future researchers to utilize [14].

2-18

 Lastly another major project within Click to create RMPs is the Grid Ad-hoc

Networking Project [36]. This project was founded by the Parallel & Distributed

Operating System Group out at MIT. It also contains the Roofnet project at MIT, which

is a rooftop network of around 50 nodes throughout the students’ apartments in

Cambridge. Figure 2-5 shows a map of the rooftop network that comprises the Roofnet.

This project has also spawned other projects like the NetEquality 70-node deployment in

Portland, OR [36]. They primarily utilize the in-house developed SRCR MANET

protocol, but they did develop a Perl script for a DSR Click configuration. This script

requires some node specific input from the user and is somewhat deprecated as it was

written in 2003 [36].

Figure 2-5. Grid/Roofnets Link Map of MIT with nodes and link data rate

2.3.2.2. Proactive Protocols

 There are also some research projects that have been accomplished to create Click

configurations for PMPs. One project was completed by Joachim Klein as a Master’s

Thesis to create a Click implementation of Optimized Link State Routing (OLSR) [22].

Klein created new elements within Click in order to route packets according to the OLSR

specification. He validated his implementation by evaluating the computational

2-19

performance of each node’s ability to handle routing between the other nodes. This was

performed within a test bed that was developed at his university. He identified that his

implementation scaled poorly when the node count was increased, but it did still adhere

to the OLSR specifications [22].

 The Grid/Roofnet project also created Click configurations for DSDV in addition

to the DSR configuration previously mentioned. They utilized it the same way as the

DSR configurations and used it throughout their Roofnet nodes that were deployed across

MIT’s community. In addition they also created another Perl script that would generate a

DSDV Click configuration file for the operator based on supplied node information [36].

2.4. Summary

 This chapter’s primary focus was on MANET protocols, and their

implementations that are key components to this thesis work. The first section dealt

exclusively with general information of MANET topologies and protocols. The two

protocols discussed in depth due to their application in the following chapters of this

work were DSR and DSDV, as an example of a reactive and proactive MANET protocol

respectively. These protocols are used throughout this work to analyze physical MANETs

and simulations of MANETs.

 The second section reviewed network simulations and some of the current

problems associated with MANET simulations. Lastly, the Click modular software

architecture was reviewed in order to gain an understanding of how MANET protocols

were developed within it. This section was also used to cover the previous work done by

the MANET community within Click. All of the previous work discussed had some

bearing in designing and developing the test bed, simulation environment, and

experiments in Chapter 4 of this work.

3-1

3. Methodology

 This thesis work was done to provide more reliable and realistic MANET

simulation environments at the physical layer by integrating key characteristics of the

MANET domain. The previous chapter discussed the MANET protocols that are used

and previous MANET work that has been conducted within NS-2 and the Click software

architecture. The work presented in this chapter is based on the analysis of Kotz et al.

[26] that current MANET simulation research is overly simplified.

3.1. Problem Definition

3.1.1 Goals and Hypothesis

 As stated the goal of this work is to develop a simulation environment that can

accurately model a MANET protocol. The resulting simulation environment will be

modeled after a real world MANET test bed to ensure it accurately follows the

characteristics of the physical layer that previous simulation attempts have omitted or

simplified. The MANET protocol being evaluated can be customized in both the test bed

and the simulation due to the granularity of the Click software architecture and the NS-2

simulation engine. Since almost every characteristic of the protocol and wireless medium

can be customized, a high level of granularity in the resulting simulation environment is

permitted.

 The test bed data is expected to offer a realistic baseline to develop the simulation

environment. The parameters were changed within NS-2 and Click showing that MANET

protocol simulations can align closely with realistic results by altering the physical layer

in the simulation environment. This will then allow more realistic models to be generated

within the simulation environment.

3-2

 While the new simulation environment is expected to overcome the shortcomings

of previous simulations, this development may add unexpected consequences to the

simulation engine. These may include longer simulation processing times, or more

computer system resources may be required to run the simulations. These consequences

will not alter the resulting data, but may lengthen the processing of it.

3.1.2 Approach

 The simulation environment developed for this thesis work models the test bed

experiments without the assumed axioms, specifically 1 and 2, that were outlined in

Chapter Two with the end result showing that the test bed’s physical layer can be

modeled within NS-2. This is accomplished by changing various parameters within NS-2

in order to alter the wireless propagation coverage, signal strength, and packet reception

of the nodes. This thereby ensures that the developed system models as closely as

possible to a real world implementation of a MANET protocol’s physical layer.

3.1.3 Design

 The overall design of the system developed for this research required both

physical test bed development and simulation development. The physical test bed is

required for this work to establish preliminary results, detailing specific examples of the

MANET protocols and the hardware that they depend on. The nodes were built utilizing

the Click software architecture discussed in Chapter Two of this report. The test bed was

then used to generate data for preliminary scenarios to observe the real world

performance of the MANET protocols and the hardware (HW) employed in these tests.

 The system design is similar to the methodology employed by Kotz et al. [26], in

that physical nodes were utilized to establish a MANET’s physical layer capabilities.

Kotz then used this information to compare and develop a simulation environment within

3-3

the Simulator for Wireless Ad-hoc Networks (SWAN). The system design for this work

used Click MANET nodes in the physical world and then NS-2 MANET nodes in the

simulation environment.

 Both the NS-2 and Click implementation of the MANET protocols adhere to the

current RFCs and guidelines on how packets are handled between nodes. In the realm of

this research the two are treated as equals and either one is capable of providing the

routing configuration for the nodes. Figure 3-1 shows a high level diagram of how the

system was designed in order to evaluate the effects of the axioms on a MANET’s

physical layer and not the overall routing protocol. The top layers of both environments

are equivalent since they both adhere to the current RFC standards. The bottom layer in

blue illustrates the area of study in regards to this work and the specified goal, which is to

achieve equivalency between the two environments at this level.

Figure 3-1. Design of Simulation Environment equated to Physical Environment

3.1.4 Services

 The main service this simulation environment provides is the routing of traffic

between nodes using a MANET protocol. The system is given packets originating from

nodes that are part of the system. The secondary service, which will be evaluated

throughout this research effort, that the system provides is the ability to route these

packets by adhering to a more realistic environment. This is done by routing the traffic to

the destination, while avoiding the assumption(s) made by the axioms discussed

3-4

previously. The system will demonstrate the ability to model the real world by delivering

the traffic in correlation to the physical test bed.

3.1.5 Boundaries

 As previously stated the system was developed to use NS-2’s simulation engine to

route MANET traffic and to also route traffic through the use of the Click nodes in the

physical world. The simulation environment is the System Under Test (SUT). The nodes

are the components of the system and their ability to send traffic while adhering to the

MANET protocols is the Component Under Test (CUT). Once the system demonstrates it

can effectively model a MANET protocol’s physical layer, other MANET protocol

simulations can be developed in the same fashion.

 The system requires inputs, i.e. Workload Parameters, to test its ability to send

traffic between the nodes. The System Parameters are the characteristics of the system

that if changed affect the metrics and output of the system [4]. The metrics observed

within the system are used to compare it to the MANET test bed and also to a basic NS-2

MANET implementation that employs the assumed axioms. Finally, the output of the

system reports on the traffic delivery between the nodes in relation to the system

parameter being evaluated. The diagram below, Figure 3-2, illustrates the NS-2 MANET

Simulation Environment. The details of each area within this diagram are discussed

within the next few sections of this chapter.

3-5

Figure 3-2. System Under Test: NS-2 MANET Simulation Environment

3.1.6 Workload Parameters

 The system has two different workloads submitted to it; Transmission Control

Protocol (TCP) traffic and Constant Bit Rate (CBR) Traffic. They are both used in many

wireless experiments within NS-2 [19]. Each one offers benefits to these tests and both

types of workloads are examined due to the different types of traffic that may be present

on a MANET. The traffic will never leave the system and depending on the different

axiom being evaluated will have few hops between nodes. This means both a packet’s

source and destination node will be a component of the system. The traffic will be

delivered based off the settings entered into the NS-2 scenario files in order to accurately

test the delivery between each node. The viable routes between nodes are known prior to

submitting the traffic to the simulation environment so that the system tests the delivery

of packets and not the ability to discover routes. The ability of the MANET protocol to

discover routes does affect the packet delivery and is not measured since this work is

interested in the system’s ability to model the physical layer.

NS-2 MANET Simulation

Environment

Component under Test:

MANET Simulation Nodes

S
y

stem
 O

u
tp

u
ts

System Parameters

#
 o

f

N
o

d
es

N
o

d
e

 S
ettin

g

All packets received

Some packets

No packets received

A
x

io
m

settin
g

W
o

rk
lo

a
d

 P
a

ra
m

et
e
rs

CBR Traffic

TCP traffic

M
etrics

Packet Delivery

Propagation effects

3-6

 CBR traffic is used as a workload parameter to reduce the complexity of the

system and to limit any variation that may affect the system output inadvertently. Since

CBR allows the operator to specify how many packets should be sent per a specified time

period, each node has an equal opportunity of receiving the exact same amount of

packets. This is very useful when determining the effects that a different propagation

model has on each node and their location in the simulation. This makes the analysis of

the packet delivery metric straightforward, as discussed later in this chapter.

 TCP traffic was selected for the tests as a workload parameter because it offers a

more realistic traffic pattern since most network traffic is either UDP or TCP and arrives

to nodes at random rates. TCP traffic within NS-2 will also require the destination node

to acknowledge receipt of a packet since TCP is a connection-oriented protocol. This

workload parameter allows the system to show its ability to handle a larger volume of

traffic at varying rates than with the CBR traffic.

3.1.7 System Parameters

 The parameters that can affect system performance are defined as the number of

nodes in the system, the node settings, and also the axiom(s) that are being evaluated.

These parameters can all be changed within the NS-2 scenario file and do affect the

output of the system.

 The number of nodes in the system affects the ability to route traffic from source

to destination. One example is a sparsely populated simulation where the node’s coverage

areas do not overlap, which means the transmission of traffic between nodes is limited.

On the other hand if there are a large number of nodes in the simulation, congestion may

exist on the network since the wireless medium will be shared between them. The tests

that will be conducted in this report will only require a few nodes in order to affirm or

3-7

disprove the axioms discussed in the previous chapter. This parameter has a minimal

amount of impact on the system considering the tests that are conducted for this thesis

work.

 The node settings are configured through NS-2 to mimic the hardware utilized in

the physical test bed, Proxim Orinoco 802.11 a/b/g cards. These settings are always

applied equally to every node in the system to ensure there are no discrepancies between

node settings. They include wireless hardware characteristics such as frequency, data

rate, antenna model, queue length and type, channel type, Media Access Control (MAC)

type, and others that can be specified for each scenario that is run in the simulation.

 Lastly the axioms that most MANET simulations are comprised of will be used to

influence the system. These axioms will affect how nodes route traffic when they are

being evaluated. One example would be if the propagation of the nodes wireless signal

was changed from a perfect circle to another shape that resembles the real world.

 The system is affected differently when these parameters are altered or modified

for different experiments. The system may be sensitive to slight changes to these settings,

which in effect alters the system outputs. These parameters must be applied

systematically to ensure accurate results are obtained.

3.1.8 Performance Metrics

 The performance metrics cover two areas that are used to model the simulation

environment to the test bed. These areas are also used to compare the realistic simulation

results to the simulation models that utilize the assumed axioms. The two areas are:

packet delivery and propagation effects. These metrics can be measured effectively

through NS-2’s trace files and NAM files. Since each test assumes static positioning of

3-8

the nodes, the “best” route a packet should take can be configured prior to the injection of

the workload and thus its performance can be accurately measured.

 Packet delivery is measured by the ratio of packets that are sent from the

originating node to those that are received by the destination node. CBR traffic allows

this metric to be standardized at each node with a known maximum amount of packets

received. TCP traffic is not standardized between each node but instead will continually

transmit packets as long as there is a viable link to the node it is currently configured to

send to.

 Propagation effects are observed visually through the use of the Institute of

Telematics techniques that alter propagation models within NS-2 and generate the

resulting model in LaTeX [20]. These models can be adjusted according to the physical

test bed results so that the radio propagation for each node in NS-2 mimics the physical

nodes actual propagation pattern.

3.1.9 Factors

 Factors are the parameters of the system that will be changed deliberately within

the experiments in order to garner differing results. The parameters of the system that

were selected to be factors are shown in Table 3-1:

Table 3-1. Factors that influence the system and its outputs

FACTOR LEVELS

Traffic TCP and CBR

Propagation type Two Ray Ground and Shadowing

Propagation Pattern Basic (small and large) and APProxy

 These factors were chosen because of their ability to illustrate the simulation

environments success at modeling the MANET test bed’s physical layer. They allow for

distinct differences to be seen between the realistic simulation and the simulations that

3-9

adhere to the assumed axioms. These factors will be changed individually in each

experiment to reduce the variability of the tests.

 CBR and TCP traffic were selected as factors because they offer two different

packet types that will be sent within the simulation environment. TCP traffic will be sent

at a varying rate and will utilize as much of the link as possible. Whereas CBR traffic is

sent at a set rate that is specified in the Tcl script to be at a maximum of 200 packets a

second. If the models are similar then the two different types of traffic will produce

results that map closely to each other. These traffic types are used in other NS-2

MANET simulations and provide basic traffic analysis [19].

 The propagation type was selected to be a factor because in NS-2 this

configuration is what governs how the wireless signal will radiate out from each node.

The propagation type is configured to be the same for each node and is not changed

during run time of the simulation. The different types of propagation models that are used

in the experiments are NS-2’s default circular propagations, Two Ray Ground and

Shadowing, and the real world observed propagation model implemented through the

Asymmetric Propagation Proxy (APProxy). The first two are included modules within

NS-2’s all-in-one installation files while APProxy requires additional modules to be

loaded in order to implement it.

 Within each of these propagation models different variables can be set in order to

affect their coverage range. The Two Ray Ground model assumes an ideal propagation

condition between the nodes. It is primarily useful in short distances between nodes, but

it does represent the problems experienced with axiom 1 and 2. The NS-2 manual states,

“Two Ray Ground model basically represents the communication range as a circle around

3-10

the transmitter. If a receiver is within the circle, it receives all packets. Otherwise, it loses

all packets [15].” The Shadowing model on the other hand still represents the propagation

pattern as a circle around the node, but it tries to account for fading effects by allowing

the signal to gradually lower the received power in relation to the distance between the

nodes. On the other hand, the APProxy model can apply its own attributes to the nodes in

combination with the Two Ray Ground and Shadowing models. “NS-2 only supports

symmetric propagation models, which means the link quality between two nodes is

always equal [20].” This is why the Institute of Telematics developed the APProxy

model. Figure 3-3 shows the algorithm that is used to create an APProxy model. The first

step is for the proxy to calculate the angle between the transmitter and receiver. This

angle is then linearly mapped to a gain value, which is then used to modify the

transmission power of the node. Once this has been accomplished the other propagation

models, i.e. Two Ray Ground and Shadowing, will apply their attributes to the nodes.

Figure 3-3. APProxy algorithm: 1) angle calculation 2) angle mapped to gain value 3)

transmission power is modified by gain value [20]

3.2. Summary

 Adhering to the guidelines outlined in this chapter ensures that the experiments

are conducted without bias to the possible outcomes. The overarching goal is to develop a

MANET simulation environment that is able to model key characteristics of a physical

MANET test bed. The simulation environment is expected to show, through analysis of

3-11

the data, that the axioms in current MANET simulations need to be addressed

accordingly. Otherwise the simulation will over simplify the MANET protocol and leave

out key aspects of its functionality.

 The resulting metrics from the tests will be used as the comparison data against

the data retrieved from the physical test bed. This comparison will show if the developed

system is an effective model or if it still lacks the precision to model the MANET

protocol. It will also be compared against two basic NS-2 implementations that adhere to

the assumed axioms. Chapter Four will introduce the experimental design and techniques

used to gather the data. It will conclude with analysis of the results and provide some

conclusions that can be drawn from them.

4-1

4. Results and Analysis

 This chapter is devoted to the results of the physical test bed experiments and the

simulation experiments. The results are discussed and analyzed to determine if an NS-2

simulation environment can mimic the physical layer of a real world MANET

implementation. Since the overall hypothesis of this work is to show the ability of

simulations to model the real world environment, the procedures taken to accomplish this

are discussed in detail. Lastly the performance of these simulations that mimic the test

bed results will be compared to the simulations that adhere to the axioms.

4.1. Evaluation Technique

 The evaluation technique used is a combination of the measurement and

simulation techniques. The measurement technique gathers results from the physical

MANET test bed and the simulation environments, while the simulation technique is

used for the MANET NS-2 simulation environment. Both the physical test bed and

simulation environment utilized MANET protocols in order to transmit traffic between

the nodes.

 The environments that MANET protocols operate in are very diverse, which is

why Click and NS-2 were used to provide the needed flexibility to alter nodes and test the

characteristics of the protocol. It is expected that the physical test bed will show the

assumed axioms are in fact important factors to account for in a MANET simulation.

4.2. Experimental Design

 The simulation environment is designed to conduct experiments based off the

factors specified in Chapter Three. This means it requires 12 experiments: 2 (Traffic

type) * 2 (propagation model) * 3 (propagation patterns) = 2 * 2 * 3 = 12 experiments.

4-2

These experiments allow for evaluation of different scenarios associated with the three

factors.

 Figure 3-1 showed the experimental plan for this thesis work, which was to use

the Click configurations in the physical experiments and then use the NS-2 configurations

for the simulation experiments. The system in its current state is able to conduct

experiments in the physical and simulation domains. The NS-2 implementation does

generate the needed results to evaluate the assumed axioms. Figure 4-1 shows the overall

system design as seen in the previous chapter. Once again the focus of this thesis is the

ability to model the physical node’s radio HW and signal propagation as noted in the blue

boxes.

Click

MANET

Node

Physical Environment

Radio HW & Signal

Propagation

Simulation Environment

Radio HW & Signal

Propagation

NS-2

MANET

Node
≈

=

Figure 4-1. Simulation environment design

4.3. Experiment Procedures

 This section covers the procedures that were completed in order to build both the

physical test bed and the simulation environment. Not every step or technique is covered

due to the numerous coding and configuration changes that were experimented with

before arriving at the current solution. This section summarizes the problems that were

faced in developing these two platforms.

4.3.1 Physical

 The first step that needed to be accomplished to evaluate the axioms and

determine how to effectively model the real world in simulation was to build the physical

test bed. Three Dell Latitude laptops were configured to be the wireless nodes used in the

4-3

test bed. Two of the laptops had wireless Network Interface Cards (NIC) built into the

case. While these cards were sufficient to conduct the experiments, it was decided to

reduce the variability and use the exact same model card in each node. The card selected

was a Proxim 8480-WD Orinoco 802.11a/b/g ComboCard. The benefit to using these

cards was that their drivers have been implemented in most Linux operating systems

since they are popular cards with developers and researchers. Another benefit of these

cards is that their NS-2 configuration parameters have already been identified [43].

4.3.1.1. Click Installation

 The nodes then required the Click software architecture to be loaded on them so

that the MANET protocol could be implemented. Since Click was developed to operate

on a *nix platform the nodes were loaded with Ubuntu 9.10 as their operating system.

Ubuntu was chosen because it allows for plug and play hardware setups such as the

wireless cards that were being used in these nodes. In fact it only required a software

update in order to get the cards functioning properly. The update installed the MadWiFi

driver since it supported the cards chipset. Click 1.7.0rc1 was then installed on the nodes

with the options –disable-linuxmodule and –enable-all-elements. These

options installed Click to operate only in userlevel and with the ability to implement any

element that was packaged with the installation files. Userlevel was selected because

kernel level Click nodes require a patched generic kernel to be used instead of a basic

installation of Ubuntu.

 After reviewing the files and past research efforts with Click and MANET

implementations, it was discovered that the Grid/Roofnet Project from MIT had created

two Perl scripts that would create the Click configuration code for DSR or DSDV

depending on the information supplied when the script was ran. These files are within the

4-4

Click program files at ~Clickinstalldir/conf and are called make-dsr-config.pl

and make-dsdv-config.pl. These Perl scripts were run with the following command on

each of the nodes (node 1 is used as the example) [36]:

./make-dsr-config.pl –i wlan1 –a 10.0.0.1 –u > dsr1.click

 This command specified the interface to pull the MAC address from, the address

for the node, and to run it at userlevel instead of at kernel level. The next step was to

setup the wireless interface to operate in ad-hoc mode with the correct settings. Each

node had the following code entered in to the command line as root [36].

ifconfig wlan0 down (Built-in wireless card)

ifconfig wlan1 down (Must be down to configure)

iwconfig wlan1 mode ad-hoc essid click channel 1

iwconfig wlan1 txpower 1

ifconfig wlan1 up

ifconfig wlan1 10.0.0.1

 The Click configuration code was then ran on each of the nodes to allow the

nodes to connect to each other. This was done by executing the following command:

click ~/clickinstalldir/conf/dsr1.click. The code was developed in

2003 so when it was ran there were some errors and warnings due to deprecation of the

code since this work was using a newer version of Click. These issues were fixed with the

code and the elements that were not utilized or needed for this work were removed. After

the code was altered and updated, it was run under the same command and the nodes

were able to establish connectivity to each other. This was accomplished by sending

simple Internet Control Message Protocol (ICMP or “ping”) packets between the nodes.

The directed graphs in Appendix B: and Appendix C: detail the basic elements that make

up the Click nodes for both MANET protocols. These directed graphs detail the flow of

packets once they reach each node and are passed from the wireless interface to the Click

4-5

code for processing and then passed back to the interface for delivery per the processing

conducted by Click.

4.3.1.2. Physical Test Bed Data Gathering Experiments

 The nodes were fully operational and could correctly send and receive packets

between the three of them. The next step was to take them out into the field to gather

physical data points that would later be used to construct the simulation environment in

this thesis. These tests used Click nodes as described above and were conducted with

both the DSR and DSDV protocol with the results from both protocols being similar.

4.3.1.2.1 Open Field Test Bed Experiment

 The first test environment was an open field that consisted of no obstructions such

as buildings or trees. A satellite image of the test area is shown in Figure 4-2. The red

circle in the image and the computer node in the middle of it were inserted to detail

where the test took place within the image. The test was setup with a center node (Node

one) that was stationary, with the other node (Node two) carried away from the center

node until the signal was lost between them. Node two was then carried back towards

node one until the connection was restored. Node two was then carried way from the

center node a second time to establish an accurate measurement. Once node two lost the

connection a flag was placed in the ground marking the spot. This was repeated for

eighteen more spots surrounding node one. Figure 4-2 details the distance and shape of

the coverage area of the wireless signal based on this very specific time and environment

test. The figure shows the center node with the wireless card on the right hand side if a

user is looking down on the node. The goal of this test was to determine the propagation

range of the wireless nodes and the overall shape that they project. Each flag was

measured from the central node, node one, along with the measurements between the 19

4-6

spots located around the propagation area. This allowed for the test results to be

effectively graphed within Microsoft Visio, showing the propagation coverage to be more

of an egg shape rather than a perfect circle as indicated by axiom one and two. This

reflects the physical reality of the antenna gain pattern of the NIC’s transceiver.

 a. b.

Figure 4-2. a. Satellite image of outdoor experiment location (©2010 DigitalGlobe) and

b. Open Field Experiment (measurements in feet)

4.3.1.2.2 Indoor Obstruction Test Bed Experiment

 The next test that was conducted with the physical test bed was an indoor

experiment to determine the propagation effects experienced when obstructions exist

between the two nodes. The location selected was a vacant gymnasium, Jarvis Gym, on

Wright Patterson Air Force Base, Ohio. This building was ideal because there were no

preexisting wireless radios in the building, and it was comprised of cinder block walls

and steel doors. Its layout is also desirable because it contained a large open space along

4-7

with long hallways connecting multiple enclosed rooms. This layout allows the wireless

signal to be altered considerably by the environment it is operating in. The tests were

conducted with only two nodes with one node remaining stationary while the other node

moved throughout the building attempting to maintain the connection to the stationary

node. The experiment was conducted with the stationary/central node in three different

locations throughout the building. Figure 4-3 shows the different locations on a satellite

image of Jarvis Gym as colored boxes (Green, Blue, and Red).

 The experiments were conducted following the same steps as with the Open Field

Experiment described previously. The central node remained stationary and the other

node moved around the central node to discover the range of the signal. As stated

previously the stationary node was placed in three different locations within the building

so that the experiment could be run against the varying locations and obstructions that the

building offered. Figure 4-3 shows the stationary node’s placement as colored boxes

within the floor plan of Jarvis Gym.

 a. b.

Figure 4-3. a. Satellite image of Indoor experiment location (Jarvis Gym) (© GeoEye)

and b. Indoor Obstruction Experiment results

4-8

 The colored circles indicate the mobile nodes position when they were last able to

communicate and pass traffic to the stationary node. Inherently, the colors correspond to

each other where the red circles are the mobile node’s position when communicating with

the stationary node located at the red square. The signal did permeate outside of the

building but the experiment did not test for signal propagation outside of the building. An

early summary of the reception ability of the mobile node indicates that obstructions

greatly affect the ability of the signal to remain circular (axiom 1) or the ability to assume

the propagation is a simple distance to signal degradation ratio (axiom 5).

4.3.2 Simulation

4.3.2.1. Propagation Simulations

 The first step in developing the simulation environment to model the physical test

bed results required the ability to alter the signal propagation within NS-2. NS-2 allows

for three different propagation models that can be configured per a developer’s

specifications. These include Free Space, Two Ray Ground, and Shadowing. The first

two models are deterministic models, meaning if a receiving node is within the

propagation area of the sending node then every packet will be delivered [20]. Shadowing

allows for more realistic signal propagation since the probability of nodes being able to

transmit packets decreases proportionally as the nodes are distanced from each other [15].

 However, these three models still do not allow for any other propagation pattern

other than circular. The need for a developer specified propagation pattern lead to the

discovery and implementation of a third party NS-2 module developed by the Institute of

Telematics, Hamburg, Germany. This module was discussed previously in Chapter Three

as the Asymmetric Propagation Proxy (APProxy). This module was added to the NS-2

simulation environment by adding new agent code, NBhAgent.cc/.h, and a new packet,

4-9

Mypacket.cc/.h, in addition to the APProxy code, AsymmetricPropagationProxy.cc/.h

[20]. NBhAgent.cc, NBhAgent.h, MyPacket.cc, and MyPacket.h code files were all

placed in the NS-2 installation location/ns2.34/common/ folder. The file packet.h had to

be edited so that the new packet format, Mypacket.cc, would be recognized by NS-2. The

code: static packet_t PT_MYHEADER = 63; and name_[PT_MYHEADER]

= “myheader”; were added to their respective sections in the file. The NS-2

makefile.in was then changed within the OBJ_C section to include the following three

lines of code:

 common/NBhAgent.o \

 common/Mypacket.o \

 mobile/AsymmetricPropagationProxy.o \

 NS-2 was then reconfigured and make install was run to include the new objects

within NS-2. Finally LaTeX had to be installed on the system so that visual

representations of the propagations could be created. Once it was installed two Tcl

scripts, initialize.tcl and writeoutput.tcl, were added to NS-2 installation location/ns2.34

folder. After these steps were complete NS-2 could now generate propagation models as

defined within the Tcl script ran in conjunction with initialize.tcl. The commands used to

generate these models are: ns simulate.tcl shadowing.tcl and pdflatex

document.tex. The resulting diagram of these Tcl scripts is shown in Figure 4-4.

4-10

Figure 4-4. Diagram of shadowing.tcl script – top graph is the probability of receiving a

packet and lower graph is a 2D area plot of the propagation pattern [20]

4.3.2.2. Traffic Simulations

 Now that the signal propagation could be altered to model the physical test bed’s

propagation pattern, NS-2 was configured to send traffic utilizing the circular propagation

models, Two Ray Ground and Shadowing, and the APProxy propagation model. The goal

of these simulations was to compare the commonly used NS-2 propagation models, Two

Ray Ground and Shadowing, to the modified APProxy propagation model. Appendix D:

has all of the code used to create the traffic simulations described in this section. The two

main Tcl scripts used for the traffic simulations were TCPegg.tcl and CBRegg.tcl. These

were both created by using the University of California’s simple-wireless.tcl script as a

shell that was modified to suit the needs of this research.

 The first modification of the script was to place the nodes within the topography

of the simulation. There were two options that could have been used to simulate the Open

Field Test Bed (OFTB). They both would have node 0 be stationary in the center of the

topography. The difference between the possible paths was to either have one node

moving around node 0 to each spot that was measured in the OFTB or to have multiple

4-11

stationary nodes at each spot measured in the OFTB. The first scenario represented the

experiment as it was conducted, but did not present an easily identifiable test area in

NAM because as the node traveled around the central node the previous location will no

longer be evident. It was determined that the second approach would allow for easier

result collection. All nodes remain stationary throughout the simulation and the central

node sends traffic to each node separately for a set period of time, one second. Figure 4-5

shows TCPegg.nam, which illustrates the simulation topography with the twenty nodes

placed within it. This setup provided another benefit because bugs or errors in the script

that affect traffic flow could be identified easily by viewing the NAM trace and seeing

which node was experiencing the problems.

Figure 4-5. TCPegg.nam – TCP traffic is being sent to all nodes one at time

 The central node, node 0, was then configured to send traffic, either TCP or CBR

depending on the test being conducted, to the nodes surrounding it. Node 0 sent traffic to

each node in a clockwise rotation for exactly one second of simulation time. The CBR

4-12

traffic simulations were set to 200 packets a second, while the TCP traffic simulation

instead was set to send traffic continuously and with no set packet rate.

 Finally the last main step to conduct the simulations was to integrate the APProxy

propagation model into the traffic TCL scripts. This was done by copying the code from

the APProxy.tcl script that was used to generate the LaTeX diagrams as described in the

previous section of this chapter. The APProxy propagation model was applied to the

nodes so that their propagation signal pattern modeled closely to the OFTB.

4.4. Analysis

 This section is dedicated to the analysis of the various experiments that were

conducted in order to identify if the realistic APProxy simulations do offer benefits over

the Basic simulations. It also details how closely aligned the realistic NS-2 simulations

are to the physical test bed. It is broken into two areas the comparison of the propagation

simulation efforts and the traffic simulations.

4.4.1 Propagation Simulations

 The ability to create a visual diagram of the signal propagation for the different

models used allows for comparison between them. Each diagram was generated using the

parameters listed in Table 4-1. The parameters do remain constant throughout the

different models.

Table 4-1. Propagation parameters

NS-2 Parameters Basic (small) Basic (large) APProxy

Pt: (transmit power) 0.19 0.3018 0.2018

Gt: (transmit antenna gain) 1 1 1

Gr: (receive antenna gain) 1 1 1

Freq: (channel) 2.412e9 2.412e9 2.412e9

L: (system loss factor) 1 1 1

CPThresh: (collision threshold) 10 10 10

CSThresh: (carrier sense power) 5.011872e-9 5.011872e-9 5.011872e-9

RXThresh: (receive threshold) 5.82587e-09 5.82587e-09 5.82587e-09

4-13

 These parameters yielded the diagram as seen in Figure 4-6 of the propagation

pattern for the Basic (small) pattern utilizing the Two Ray Ground model. The top part of

the diagram shows the probability that a packet will be received by the end node. Since

the Two Ray Ground model is a deterministic model every packet is shown to be

received with a probability of 1 or 100% of the time as long as the receiver falls within

the coverage area. The bottom portion of the diagram shows the propagation pattern as a

symmetric circle around the sending node, extending out approximately 50 meters. The

bottom diagram displays the probability of packet reception by varying the level of black

shading of the propagation pattern, but since the probability is always 1 for Two Ray

Ground; the propagation pattern is completely black.

Figure 4-6. Two Ray ground circular shaped propagation – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node

 The next diagram, Figure 4-7, was created by utilizing the Shadowing

propagation model within the NS-2 simulation environment that had been created. This

diagram is similar to the one generated by the Two Ray Ground model in that it

represents a circular coverage area and covers roughly 50 meters. The difference is that

4-14

the Shadowing model now accounts for packet loss due to increased distance from the

sending node. The top graph in the diagram no longer has the dramatic drop-off for

packet reception. Also the bottom graph has a varying level of black shading to denote

the probability of a packet’s reception within the coverage area.

Figure 4-7. Shadowing circular shaped propagation – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node

 The last two diagrams are based off the APProxy propagation module that was

configured to represent the OFTB. The second, Figure 4-9, utilized the Shadowing

propagation parameters so that it would be more realistic in that the packet reception

probability does decrease due to distance. While the other pattern, Figure 4-8, utilized the

Two Ray Ground propagation parameters so that it could be compared to the circular

Two Ray Ground propagation pattern produced previously. The difference between the

previous models is that the transmission power was changed according to the angle

between the sender and receiver to mimic the OFTB propagation coverage area. Figure

4-15

4-8 and Figure 4-9 show the resulting diagrams where the coverage is approximately 50

meters and the pattern resembles an egg as was observed in the OFTB.

Figure 4-8. APProxy propagation based on two ray ground – a. graph of packet

reception probability b. shaded graph denoting propagation coverage area per node

Figure 4-9. APProxy propagation based on shadowing – a. graph of packet reception

probability b. shaded graph denoting propagation coverage area per node

4-16

 Overlaying the circular Two Ray Ground graph on top of the APProxy Two Ray

Ground graph provides for a visual analysis of the different coverage areas. This visual

analysis, Figure 4-10, shows that the basic NS-2 propagation models should not be able

to deliver packets to all the nodes that could receive packets within the OFTB of this

thesis work. The red shaded area denotes the NS-2 Basic (small) Two Ray Ground

propagation coverage and the blue shaded areas denote the APProxy propagation

coverage. If the circular graph had its transmit power increased to ensure that all the

nodes in the simulated OFTB would receive packets then the coverage area of the NS-2

Basic propagation would extend further out than seen in the physical world as seen in

Figure 4-11.

Figure 4-10. Two ray ground propagation model with the NS-2 Basic circular pattern

(red) overlaid onto APProxy egg pattern (blue)

Figure 4-11. Two Ray Ground propagation model with APProxy egg pattern (blue)

overlaid onto the NS-2 Basic circular pattern (red)

4-17

4.4.2 Traffic Simulations

 This section of analysis consists of the comparison of packet delivery between the

basic NS-2 propagation model and the APProxy propagation model that has been

modified to adhere to the OFTB of this research work. The comparisons were made

against the trace files that were generated when each propagation model was ran in NS-2

with CBR and TCP traffic being sent between the nodes. The basic NS-2 propagation

model was set to be the Two Ray Ground model and the Shadowing model. These

simulations resemble the propagation as seen in Figure 4-10 from the previous section,

where the circular NS-2 default propagation resides within the modified egg shaped

APProxy propagation pattern.

4.4.2.1. TCP Traffic Analysis

 TCP traffic simulations were produced and compared using both propagation

patterns, circular and egg-shaped. The egg-shaped model obviously had the modified

APProxy model running on top of either the Two Ray Ground or Shadowing model in

order to alter the pattern while the circular pattern was the default Basic NS-2 pattern.

The first comparison utilized the Two Ray Ground model as the base propagation model

for both the Basic (circular) and APProxy (egg-shaped) patterns. The second comparison

utilized the Shadowing model as the base propagation model for both patterns. As stated

previously in the procedures section, the center node, node 0, sent TCP packets to each

node individually at one second increments. The packets that were received by the

destination node were the ones of interest. The NS-2 trace file was filtered to include only

the resulting ACK packet from the destination node. The lines in the trace file that were

of interest to this work are shown in Figure 4-12. The first line shows the sending packet

from node 0 (3
rd

 column) as a TCP packet. The next line shows node 1 (3
rd

 column)

4-18

receiving the TCP packet. These lines are produced by the agent within the NS-2 Tcl

script so that these comparisons can be made.

Figure 4-12. Lines of interest from an NS-2 Trace file

4.4.2.1.1 TCP Basic (small) and APProxy simulation experiments

 The resulting table, Table 4-2, was created and populated with the totals for each

node in regards to transmitted packets from the central node to each of the external nodes

individually. There were nodes that experienced a distinct difference when receiving

packets through the circular pattern as compared to the egg pattern. Table 4-2 shows that

for both the Two Ray Ground and Shadowing models that the circular model cannot

reach all of the nodes that the egg shaped model can. This result was expected since the

circular model’s propagation does not cover the outlying nodes, approximately 180 feet

or more further out. An unexpected finding was that nodes 12-14 did not experience

packet loss in regards to the Two Ray Ground model even though the overlaid graph,

Figure 4-10, of the models indicates that these nodes may not have good reception.

 The next comparison utilized TCP packet delivery in the same manner by

counting the total number of packets sent from the source and the total number of packets

received by the destination. The only difference is that the egg-shaped and circular

propagation patterns were modeled using the Shadowing NS-2 propagation as the base

model instead of Two Ray Ground. The last two columns were created in Table 4-2 with

this data and once again the nodes in the circular pattern experienced lower packet

delivery rates than the egg pattern.

 The Shadowing model did affect every node’s ability to receive every packet for

both propagation patterns. The Shadowing model negatively affected the circular pattern

4-19

more than the egg shaped since the circular packet delivery rate was lower than the egg

shaped pattern.

Table 4-2. TCP Packet Delivery Comparison between APProxy and Basic (small)

propagation patterns using either Two Ray

TCP Packet Delivery Results
Node Info Basic (small) pattern (Circular) APProxy pattern (Egg)

ID
Distance

(ft)

Two Ray Shadowing Two Ray Shadowing

Tx Rx PD% Tx Rx PD% Tx Rx PD% Tx Rx PD%

1 189.1 1 0 0 1 0 0 250 250 100 1 0 0

2 186.8 1 0 0 5 3 60 251 251 100 9 8 89

3 183.7 1 0 0 2 0 0 253 253 100 12 10 83

4 170.6 244 244 100 1 0 0 249 249 100 2 0 0

5 171.9 252 252 100 1 0 0 254 254 100 2 0 0

6 161 255 255 100 1 0 0 249 249 100 1 0 0

7 139 258 258 100 99 99 100 249 249 100 119 118 99

8 130.4 257 257 100 116 116 100 256 256 100 141 131 93

9 134.1 251 251 100 117 117 100 256 256 100 132 120 91

10 134.9 257 257 100 120 120 100 254 254 100 141 140 99

11 160.1 251 251 100 47 36 77 255 255 100 71 70 99

12 167.4 251 251 100 29 16 55 260 260 100 1 0 0

13 176.1 249 249 100 2 0 0 250 250 100 1 0 0

14 172.6 247 247 100 20 18 90 253 253 100 48 48 100

15 155.1 243 243 100 2 0 0 248 248 100 90 76 84

16 138.4 249 249 100 115 115 100 256 256 100 117 116 99

17 131 254 254 100 93 92 99 249 249 100 160 160 100

18 132.9 250 250 100 115 115 100 249 249 100 136 133 98

19 154.7 249 249 100 42 35 83 252 252 100 55 50 91

 In order to understand and visually see the comparison between the different

simulation runs, line graphs were produced using this data. The graphs, Figure 4-13 and

Figure 4-14, show the difference between each sending pair’s packet delivery metric

when using the Shadowing model. The darker line with the diamond markers indicate the

total number of TCP packets sent by node 0, while the lighter line with the square

markers indicate the total number of TCP packets received by the destination node. For

TCP traffic within NS-2 it appears that the node will only send TCP traffic if it knows it

can deliver to the intended recipient. Within the trace files there are various NS-2

administrative and discovery packets being sent between the nodes that do clutter up the

results. Comparing both graphs shows that the Egg shaped pattern provides a higher level

of packet delivery with the Shadowing model applied even though it was not successful

4-20

in transmitting at all to 6 of the 19 nodes. The Circular shaped pattern on the other hand

was unable to transmit packets to 7 of the 19 nodes and had lower packet delivery metrics

to all nodes when compared to the egg shaped pattern. The NS-2 node placement is

shown to the right of the graphs for reference and the nodes that have received a 0%

packet delivery metric have been grayed out for a quick visual comparison. These graphs

also provided relevant results when observing how NS-2 handles TCP traffic with

wireless nodes. The results show that when a destination node is outside of the sending

node’s coverage area then the sending node will only attempt a few packet transmissions

or even none at all. This can be attributed to either a nonexistent route between the sender

and destination nodes or because NS-2’s TCP implementation is unable to create a

reliable connection between the sending and receiving nodes [16].

Figure 4-13. Line graph of packet delivery using the Shadowing APProxy pattern

Figure 4-14. Line graph of packet delivery using the Shadowing Basic (small) shaped

propagation pattern

Node ID

Node ID

P
a

ck
et

s
P

a
ck

et
s

TCP APProxy pattern packet delivery using Shadowing Model

TCP Basic (small) pattern packet delivery using Shadowing Model

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

4-21

 The next two graphs produced from the data in Table 4-2 are Figure 4-15 and

Figure 4-16. The first graph, Figure 4-15, shows the comparison between the APProxy

pattern and NS-2’s Basic (small) pattern when they both are utilizing the Two Ray

Ground model. The red line corresponds to the Basic pattern and the blue line

corresponds to the APProxy pattern. The important result highlighted in this graph is the

inability of the Basic (small) pattern to send traffic successfully to nodes 1-3. The Basic

pattern was however capable of successfully transmitting packets to all other nodes at the

same rate as the APProxy pattern.

Figure 4-15. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model

 The next graph, Figure 4-16, also compares the Basic (small) pattern to the

APProxy pattern just as Figure 4-15 does except that this graph shows the differences

when the Shadowing model is used instead of the Two Ray Ground model. The first

result that is shown in this graph is that the Shadowing model decreases the total packets

received per node to 160 or less. This is due to the fading effects that are utilized in NS-

2’s Shadowing model. The next result detailed in this graph is that the APProxy pattern

has a greater than or equal packet reception count when compared to the Basic pattern at

every node except node 12. When the results are averaged between all the nodes the

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

Node ID

P
a

ck
et

s

TCP packet reception for APProxy and Basic (small) using Two Ray Ground model

4-22

Basic pattern averages 46.42 TCP packets per second and the APProxy pattern averages

62.11 TCP packets per second. This equates to a difference in favor of APProxy of 15.68

TCP packets per second or a 33.79% higher packet reception rate than the Basic pattern.

Figure 4-16. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model

 The last graph, Figure 4-17 was of packet reception results for all four different

simulation runs. This graph is a culmination of the graphs depicted in Figure 4-15 and

Figure 4-16. The results for the Two Ray Ground model in NS-2 prove that MANET

research does utilize the assumed axioms discussed in Chapter Two of this thesis. In

particular axioms 1 and 2, deal with the physical layer’s coverage area being represented

as a perfect circle with every node having the same range. This graph shows that the

APProxy pattern running on top of the Shadowing model may be more realistic when

using the values used in this research work. This graph also has the NS-2 node placement

to the right of it, and any node that experienced a 0% packet delivery metric were grayed

out regardless of model or pattern.

Node ID

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

P
a

ck
et

s

TCP packet reception for APProxy and Basic (small) using Shadowing model

4-23

Figure 4-17. Line graph of packet receptions between all four TCP simulation runs

 This graph can be broken down into several areas in order to understand the

results that it presents. The lighter blue and red lines indicate the shadowing model’s

packet reception of the receiving node, whereas the darker blue and red lines indicate the

Two Ray model’s packet reception. Blue lines correspond to the modified APProxy

pattern (Egg shaped), which correlates to the propagation pattern observed in the OFTB.

The Red lines correspond to the basic NS-2 propagation pattern (Circular), which is what

axiom 1 states is a common mistake in current MANET simulation environments since

the pattern is a perfect circle around the node.

 The graph shows that when the Shadowing model is used with TCP traffic then

there is a decrease in packet reception at the destination node as compared to the Two

Ray propagation models. The Two Ray line graphs indicate a perfect signal to the

destination node so every packet that was sent by the source node is received by the

destination node as long as the node is within the source’s coverage area. Using the Two

Ray Ground model, only the APProxy pattern was able to transmit packets to every node

in the environment. The basic pattern was unable to transmit any packets to nodes 1-3,

which was expected based on the simulation coverage graph as seen in Figure 4-18. In

Node ID

P
a

ck
et

s

TCP Packet reception for APProxy & Basic (small) patterns using both

propagation models

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

4-24

addition to nodes 1-3 the basic pattern was also expected to have poor transmission rates

to nodes 12 and 13, but these nodes had a 100% packet delivery metric with the Two Ray

model. The ability of the basic pattern to deliver packets to those nodes was unexpected

and shows that the basic pattern’s results are not exactly in line with the graph in Figure

4-18. This unexpected result leads to the assumption that the propagation simulation

graphs generated in section 4.4.1 are not perfect representations of the exact coverage

area of each pattern.

Figure 4-18. Basic pattern overlaid onto APProxy pattern (same as Figure 4-10)

 The shadowing line graphs for both patterns also produced relevant results

because both patterns were unsuccessful at delivering a single packet to nodes 1, 4, 5, 6,

and 13. The expected results of both patterns when the shadowing model was used was

that the packet received count at each destination node would be lower than the Two Ray

model’s results, but not a complete inability to receive at those nodes. In addition to both

patterns inability to successfully send packets to those nodes, the packet delivery metric

is very similar for each destination node between the patterns. In fact the basic pattern has

a better packet delivery percentage on some nodes. This is because the basic pattern was

able to receive a packet better at the destination nodes, but this metric is slightly

misleading when used with TCP traffic. The reason it is misleading is while the basic

pattern did have a better ratio of received packets to sent packets (packet delivery metric)

the basic pattern also consistently sent fewer TCP packets to the destination nodes. This

4-25

is seen when comparing the two patterns line graphs in Figure 4-17. While the APProxy

pattern does perform better overall than the basic NS-2 pattern, the difference between

the two patterns is small for some nodes and even performs better for one, node 12, in the

Basic pattern results.

4.4.2.1.2 TCP Basic (large) and APProxy simulation experiments

 The next TCP traffic simulation experiment that was conducted in order to

illustrate the differences between the Basic pattern and the APProxy pattern was to create

the Basic pattern shown in Figure 4-11. This pattern is referred to as the Basic (large)

pattern throughout this section and in Table 4-3. The reason this simulation was

conducted and these results were generated was to show that current MANET simulations

would inflate the results if the coverage pattern was set to a higher value to include every

node in the scenario modeled after the OFTB. The APProxy pattern data that was used to

fill in this table is the same data in Table 4-2.

Table 4-3. TCP Packet Delivery Comparison between APProxy and Basic (large)

propagation patterns using either Two Ray Ground or Shadowing models

TCP Packet Delivery Results
Node Info Basic (large) pattern (Circular) APProxy pattern (Egg)

ID
Distance

(ft)

Two Ray Shadowing Two Ray Shadowing

Tx Rx PD% Tx Rx PD% Tx Rx PD% Tx Rx PD%

1 189.1 250 250
100

1 0 0 250 250
100

1 0 0

2 186.8 251 251 100 57 56 98 251 251 100 9 8 89

3 183.7 254 254 100 1 0 0 253 253 100 12 10 83

4 170.6 245 245 100 106 95 90 249 249 100 2 0 0

5 171.9 246 246 100 1 0 0 254 254 100 2 0 0

6 161 252 252 100 105 105 100 249 249 100 1 0 0

7 139 249 249 100 198 198 100 249 249 100 119 118 99

8 130.4 248 248 100 231 231 100 256 256 100 141 131 93

9 134.1 251 251 100 212 212 100 256 256 100 132 120 91

10 134.9 258 258 100 228 228 100 254 254 100 141 140 99

11 160.1 252 252 100 172 168 98 255 255 100 71 70 99

12 167.4 259 259 100 117 117 100 260 260 100 1 0 0

13 176.1 253 253 100 1 0 0 250 250 100 1 0 0

14 172.6 252 252 100 132 132 100 253 253 100 48 48 100

15 155.1 245 245 100 174 174 100 248 248 100 90 76 84

16 138.4 248 248 100 212 212 100 256 256 100 117 116 99

17 131 255 255 100 218 218 100 249 249 100 160 160 100

18 132.9 253 253 100 219 219 100 249 249 100 136 133 98

19 154.7 251 251 100 154 154 100 252 252 100 55 50 91

4-26

 The first graph produced to compare the Basic (large) pattern to the APProxy

pattern is Figure 4-19. In comparing this data the first result that differs from the other

comparison between APProxy and the Basic (small) pattern is that the Basic (large)

pattern is able to successfully transmit to every node when using the Two Ray Ground

model. The Basic (small) pattern was unable to transmit successfully to nodes 1-3. The

similarity to the Basic (small) pattern is that if the receiving node is in the coverage area

of the sender then those nodes will receive every packet sent within the one second time

slice. This means there is once again little difference between the APProxy pattern and

the Basic pattern when the Two Ray Ground model is used as long as the pattern covers

every node.

Figure 4-19. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model

 The next graph produced using the results in Table 4-3 is Figure 4-20. This graph

illustrates the inflation in packets received when the Basic pattern utilizes a higher

transmit power in order to represent the coverage area seen in Figure 4-11. The Basic

(large) pattern has a higher or equal packet reception count when compared to the

APProxy pattern at every node except node 3. This is a complete reversal from the results

Node ID

P
a

ck
et

s

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

TCP Packet reception for APProxy and Basic (large) patterns using Two Ray

Ground model

4-27

seen when comparing the Basic (small) pattern to the APProxy pattern in that the

APProxy pattern had higher packet reception counts at every node except one. When the

results are averaged between all the nodes the Basic (large) pattern averages 132.58 TCP

packets per second and the APProxy pattern averages 62.11 TCP packets per second.

This equates to a difference in favor of the Basic (large) pattern of 70.37 TCP packets per

second or a 113.47% higher packet reception rate than the Basic pattern.

Figure 4-20. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model

4.4.2.2. CBR Traffic Analysis

 The CBR traffic results were gathered in the same manner as the TCP traffic

results. The trace files were filtered for the same two types of packets indicating the

packet delivery metric between the central node and each of the outlying nodes. The only

difference is that the packet type was now CBR instead of TCP.

4.4.2.2.1 CBR Basic (small) and APProxy simulation experiments

 Table 4-4 was produced using the summation of these packets under their

respective columns. The difference in values indicates a divergence between the two

different traffic types used in this research, TCP and CBR. Since the CBR traffic in this

research uses the User Datagram Protocol (UDP), there were no reply acknowledgement

packets from the receiver. In addition, NS-2 treated this traffic differently, because it sent

Node ID

P
a

ck
et

s

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

TCP Packet reception for APProxy and Basic (large) patterns using Shadowing model

4-28

the packets regardless of the receiving node’s ability to hear them. This is shown in the

discrepancy between the Tx and Rx of packets using the Shadowing model. The last

interesting observation is that the traffic was configured to send 200 packets per second,

but NS-2 was only able to send approximately 180 (181 from node 7 on). This may be

due to the administrative packets that were sent within each NS-2 trace file.

Table 4-4. CBR Packet Delivery Comparison between APProxy and Basic (small)

propagation patterns using either Two Ray Ground or Shadowing models

CBR Packet Delivery Results
Node Info Basic (small) pattern (Circular) APProxy pattern (Egg)

ID
Distance

(ft)

Two Ray Shadowing Two Ray Shadowing

Tx Rx PD% Tx Rx PD% Tx Rx PD% Tx Rx PD%

1 189.1 180 0 0 180 0 0 180 180 100 180 0 0

2 186.8 180 0 0 180 13 7 180 180 100 180 17 9

3 183.7 180 0 0 180 0 0 180 180 100 180 0 0

4 170.6 180 180 100 180 0 0 180 180 100 180 0 0

5 171.9 180 180 100 180 0 0 180 180 100 180 0 0

6 161 180 180 100 180 0 0 180 180 100 180 0 0

7 139 181 181 100 181 0 0 181 181 100 181 0 0

8 130.4 181 181 100 181 176 97 181 181 100 181 181 100

9 134.1 181 181 100 181 181 100 181 181 100 181 172 95

10 134.9 181 181 100 181 177 98 181 181 100 181 165 91

11 160.1 181 181 100 181 48 27 181 181 100 181 23 13

12 167.4 181 181 100 181 5 3 181 181 100 181 0 0

13 176.1 181 181 100 181 6 3 181 181 100 181 16 9

14 172.6 181 181 100 181 0 0 181 181 100 181 0 0

15 155.1 181 181 100 181 94 52 181 181 100 181 108 60

16 138.4 181 181 100 181 86 48 181 181 100 181 138 76

17 131 181 181 100 181 177 98 181 181 100 181 181 100

18 132.9 181 181 100 181 179 99 181 181 100 181 181 100

19 154.7 181 181 100 181 90 50 181 181 100 181 77 43

 Line graphs were produced for the CBR traffic in the same way as for the TCP

traffic. Once again, this work compared the two patterns to their packet delivery results

under the Shadowing model, Figure 4-21 and Figure 4-22. The egg shaped pattern again

had a better packet delivery metric, but not for every node and not as great of a margin.

Nodes 9, 10, 11, 12, and 19 in the circular pattern simulation all had a better packet

delivery metric, with most of the other nodes being within a few packets of the egg

shaped pattern. This is interesting in that the different types of traffic, TCP or CBR, affect

the packet delivery metric differently. The NS-2 node placement is shown to the right of

4-29

the graphs and the nodes with a 0% packet delivery metric have been grayed out. Unlike

TCP traffic in NS-2, CBR (UDP) traffic will allow the sending node to send packets to

the destination node, even if the node is not in the sender’s coverage area. This is

important to note since the packet metric for CBR traffic will now be influenced by a

constant send rate of approximately 180 packets per node. Another interesting

observation in the two graphs below when comparing the CBR traffic to the TCP traffic

results is that even with the Shadowing model in use some destination nodes were able to

receive all the packets that were sent in the one second time period. This was not true for

the TCP traffic results, since not a single node was able to receive more than half of the

packets sent under the Shadowing model as compared to the Two Ray model.

Figure 4-21. Line Graph of packet delivery using the Shadowing Egg shaped

propagation pattern

Figure 4-22. Line Graph of packet delivery using the Shadowing Circular shaped

propagation pattern

Node ID

Node ID

P
a

ck
et

s
P

a
ck

et
s

CBR APProxy pattern packet delivery using Shadowing Model

CBR Basic (small) pattern packet delivery using Shadowing Model

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

4-30

 The next two graphs produced from the data in Table 4-4 are Figure 4-23 and

Figure 4-24. These graphs produce similar results for the CBR traffic as they did for the

TCP traffic (Figure 4-15 and Figure 4-16) with slight differences. The difference between

TCP and CBR packet reception in the first graph is that the CBR traffic will only send a

maximum of 200 packets per second and due to NS-2’s processing overhead, only 180

packets are sent each second. The graph shows the same results as TCP when comparing

the two patterns, Basic to APProxy, because the APProxy pattern is able to successfully

transmit packets to all nodes whereas the Basic pattern cannot send to nodes 1-3. This

result is the most important to this research since it again shows the inability of the Basic

pattern to transmit packets to all the nodes.

Figure 4-23. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model

 The next graph, Figure 4-24, again compares the Basic (small) pattern to the

APProxy pattern while using the Shadowing model as the basis for both patterns in the

same way Figure 4-16 does. The difference between the TCP and CBR traffic results in

this graph is that the two patterns are more closely aligned. The Basic pattern when

sending CBR traffic is able to successfully transmit more packets to 5 of the 19 nodes

than the APProxy pattern. When the results are averaged between all the nodes the Basic

pattern averages 64.84 CBR packets per second and the APProxy pattern averages 66.26

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

Node ID

P
a

ck
et

s

CBR packet reception for APProxy & Basic (small) patterns using Two Ray Ground

4-31

CBR packets per second. This is only a difference in favor of APProxy of 1.42 CBR

packets per second on average or a 2.19% higher packet reception rate than the Basic

pattern.

Figure 4-24. Line graph of packet reception between Basic and APProxy patterns with

Shadowing model

 Finally the last line graph created from the results in Table 4-4, Figure 4-25, was

another graph indicating the packet reception between all four different simulations

passing CBR traffic. This graph again shows that the egg shaped pattern performs better

than the circular pattern, but there is a significant difference between it and the TCP

traffic graph. The shadowing model does not directly affect every node’s packet delivery

metric as it did with TCP traffic. In addition as stated earlier the circular pattern aligns

more closely with the egg shaped pattern with the Shadowing model when using CBR

traffic. Also the improvement of the APProxy pattern over the Basic pattern is less

pronounced when using the CBR protocol over the TCP protocol. There is however very

few network deployments that will only use the CBR (UDP) protocol. Most deployments

will be a hybrid of the two protocols with the majority being TCP traffic. This graph also

has the NS-2 node placement to the right of it, and any node that experienced a 0%

packet delivery metric was grayed out regardless of model or pattern.

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

Node ID

P
a

ck
et

s

CBR Packet reception for APProxy & Basic (small) patterns using Shadowing model

4-32

Figure 4-25. Line graph of Packet reception between all four CBR simulation runs

 This graph can be broken down into several areas in order to understand the

results that it presents. The darker blue and red lines indicate the shadowing model’s

packet reception of the receiving node, whereas the lighter blue and red lines indicate the

Two Ray model’s packet reception. Blue lines correspond to the modified APProxy

pattern (Egg shaped), which correlates to the propagation pattern observed in the OFTB.

The Red lines correspond to the basic NS-2 propagation pattern (Circular), which is what

axiom 1 states is a common mistake in current MANET simulation environments since

the pattern is a perfect circle around the node. The line graphs are similar in shape to the

same graph produced with the results from the TCP traffic simulations. One difference

between Figure 4-17 and Figure 4-25 is the number of packets sent to each node. The

interesting difference between the two figures was mentioned previously in this section,

which is the fact that some destination nodes in both patterns, Basic and APProxy, were

able to receive the same amount of packets in either model, Two Ray or Shadowing.

 Other than those items the two figures do produce relatively the same results in

that the Basic pattern when using the Two Ray Ground model is unable to transmit a

single packet successfully to nodes 1-3. The figures are also similar because the APProxy

pattern when using the Two Ray Ground model is capable of receiving 100% of the

P
a

ck
et

s

Node ID

CBR packet reception for APProxy & Basic (small) patterns using both models
1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

4-33

packets sent to every single destination node at each time slice. The other similarity is

that the Shadowing model degrades the packet delivery metric significantly for most of

the nodes. Once again the basic NS-2 pattern is does perform worse overall, but this time

there are four destination nodes, 9, 10, 11, and 19, that receive more packets with the

basic pattern than the APProxy pattern.

4.4.2.2.2 CBR Basic (large) and APProxy simulation experiments

 The traffic simulation experiment, to illustrate the difference between the patterns

seen in Figure 4-11, was conducted with CBR traffic. This thesis work refers to the NS-2

Basic pattern as the Basic (large) pattern throughout this section and in Table 4-5. This

simulation was conducted to show how inflated the results would be if the transmit power

was increased on the Basic NS-2 pattern to ensure complete coverage of all nodes. The

APProxy data used for the comparisons in this section is the same as in Table 4-4.

Table 4-5. CBR Packet Delivery Comparison between APProxy and Basic (large)

propagation patterns using either Two Ray Ground or Shadowing models

CBR Packet Delivery Results
Node Info Basic (large) pattern (Circular) APProxy pattern (Egg)

ID
Distance

(ft)

Two Ray Shadowing Two Ray Shadowing

Tx Rx PD% Tx Rx PD% Tx Rx PD% Tx Rx PD%

1 189.1 180 180 100 180 0 0 180 180 100 180 0 0

2 186.8 180 180 100 180 114 63 180 180 100 180 17 9

3 183.7 180 180 100 180 0 0 180 180 100 180 0 0

4 170.6 180 180 100 180 67 37 180 180 100 180 0 0

5 171.9 180 180 100 180 13 7 180 180 100 180 0 0

6 161 180 180 100 180 180 100 180 180 100 180 0 0

7 139 181 181 100 181 181 100 181 181 100 181 0 0

8 130.4 181 181 100 181 181 100 181 181 100 181 181 100

9 134.1 181 181 100 181 181 100 181 181 100 181 172 95

10 134.9 181 181 100 181 181 100 181 181 100 181 165 91

11 160.1 181 181 100 181 181 100 181 181 100 181 23 13

12 167.4 181 181 100 181 181 100 181 181 100 181 0 0

13 176.1 181 181 100 181 166 92 181 181 100 181 16 9

14 172.6 181 181 100 181 161 89 181 181 100 181 0 0

15 155.1 181 181 100 181 180 99 181 181 100 181 108 60

16 138.4 181 181 100 181 181 100 181 181 100 181 138 76

17 131 181 181 100 181 181 100 181 181 100 181 181 100

18 132.9 181 181 100 181 180 99 181 181 100 181 181 100

19 154.7 181 181 100 181 180 99 181 181 100 181 77 43

4-34

 The first graph produced compares the Basic (large) pattern to the APProxy

pattern in Figure 4-26. In comparing this data, the first difference from the results in

Table 4-4 is that the Basic (large) pattern is able to successfully transmit to every node

when using the Two Ray Ground model. The Basic (small) pattern was unable to transmit

successfully to nodes 1-3. This is a similar result as seen with the TCP traffic simulations,

meaning there is little difference between the APProxy pattern and the Basic (large)

pattern when the Two Ray Ground model is used.

Figure 4-26. Line graph of packet reception between Basic and APProxy patterns with

Two Ray Ground model

 The next graph, Figure 4-27, was produced in order to illustrate the inflated

results that are generated when using a higher transmit power for the Basic pattern. Just

as with the TCP results the Basic (large) pattern out performs the APProxy pattern. Not a

single node performs better with the APProxy pattern in the comparison. In fact, the

Basic (large) pattern using the Shadowing model performs at the same level as the Two

Ray Ground for 12 of the 19 nodes. When the results are averaged between all the nodes,

the Basic (large) pattern averages 141.53 CBR packets per second and the APProxy

pattern averages 66.26 CBR packets per second. This equates to a difference in favor of

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

Node ID

P
a

ck
et

s

CBR Packet reception for APProxy & Basic (large) patterns using Two Ray ground

4-35

the Basic (large) pattern of 75.26 CBR packets per second or a 113.58% higher packet

reception rate than the Basic pattern.

Figure 4-27. Line graph of packet reception between Basic and APProxy patterns using

Shadowing model

4.4.2.3. Additional Traffic Analysis

 While reviewing the graphs of TCP and CBR traffic for both patterns another

assumed axiom was observed. The Two Ray Ground graphs, Figure 4-15 and Figure

4-23, show the problem of axiom 4, “If I can hear you, I can hear you perfectly”. NS-2

uses this assumed axiom for the Two Ray Ground model as stated in Chapter Two in that

any node in the coverage area of the sending node will receive all packets sent to it. The

Two Ray Ground graphs are in contrast with the Shadowing model graphs, Figure 4-16

and Figure 4-24, which do remove assumed axiom 4 from the simulation environment.

These graphs clearly showcase the shortcomings when using NS-2’s Two Ray Ground

propagation model since every packet was delivered to the destination node unless it was

outside of the coverage area. This obviously does not hold true in the real world since

there is packet loss due to obstructions or the distance between the sender and receiver.

4.4.3 Impact and Contributions

 The impact and contributions of this research to the community demonstrates that

simulation environments can realistically model the physical layer of a MANET protocol

Node ID

P
a

ck
et

s

1

17
16

15

14

1312 11
10

9

8

7

6
5

4
3

2

18
19

CBR Packet reception for APProxy & Basic (large) patterns using Shadowing model

4-36

implementation. The procedures that are outlined in this work detail the steps needed for

future developers to create their own realistic physical layer NS-2 models. This work

illustrates the specific results of a physical test bed experiment that was later modeled in

an NS-2 simulation environment. This demonstrated the differences at the physical layer

between two basic NS-2 simulation environments and the environment modeled after the

physical test bed (APProxy). Two basic environments were built to showcase two

common coverage area scenarios that a MANET developer/researcher utilizes in current

simulations. The first basic coverage area completely resided within the actual physical

coverage area results (Figure 4-10) and the second covered the entire physical coverage

area (Figure 4-11).

 The results, for the basic NS-2 simulations and the modified APProxy

simulations, demonstrated that the realistic propagation pattern (APProxy) avoids the

axioms discussed in Chapter Two. The results support the findings [26] that MANET

simulations are utilizing axioms that assume away physical layer attributes. The reason is

that NS-2 does have the built-in capability to modify the Basic circular propagation

model’s coverage pattern. When a researcher or developer utilizes NS-2 to test or

evaluate a MANET protocol, their options are limited to the basic circular pattern running

on top of either the Two Ray Ground model or the Shadowing model. They can either

enlarge the circular pattern to completely cover what the real world pattern would cover,

or they can set the circular pattern to have a coverage area that resides within the non-

circular physical world’s coverage area. Both scenarios utilizing the basic pattern, as

shown in the results of this chapter, will not provide an accurate realistic model since

4-37

nodes will either have a lower or higher packet reception rate when compared to the

realistic APProxy pattern.

 If the basic patterns are built on top of the Two Ray Ground model then they

adhere to axiom 4, “If I can hear you, I can hear you perfectly”, since the Two Ray

Ground model assumes a perfect signal to any node in the sender’s coverage area. NS-2

does allow for fading effects when the Shadowing model is utilized with the basic

pattern, but the Shadowing model still adheres to axiom 1 and 2 by applying a circular

pattern equally to all nodes in the simulation. The results that were discussed in the

previous sections of this chapter do indicate that changing the signal pattern to a realistic

pattern does provide for a more accurate coverage area. The work outlined in this thesis

should be implemented in order to have a more robust simulation environment that

depicts a realistic physical layer.

4.5. Summary

 The basic testing conducted in this chapter indicates that the assumptions

(axioms) made by MANET researchers in simulations do overlook key characteristics of

the MANET environment. These physical layer assumptions can be simulated in NS-2

and can offer a better understanding of how the protocol in question will operate when

deployed in the physical domain. The procedures detailed in this chapter demonstrate the

knowledge gained from researching the information contained in Chapter Two. The test

bed was developed using code and instructions from the Grid/Roofnet project and the

simulation environment was developed by adhering to some of the techniques outlined by

Marc Greis, the Institute of Telematics, and other previous NS-2 research.

5-1

5. Conclusions and Recommendations

 The conclusions are based off the knowledge gained from previous work that was

discussed in chapter two and how the results, observed within chapter four, were able to

address the overall problem discussed in chapters one and three. Future research ideas are

also discussed in this chapter for those that may be interested in extending this work.

5.1. Conclusions of Research

 This thesis work has been conducted to develop a MANET simulation

environment that adheres more closely to the real world. The problem and a generic

scenario were introduced in Chapter One detailing the overall need for a more realistic

simulation environment. Chapter Two covered the MANET protocols that this thesis

utilized and their general configurations. In addition, Chapter Two covered network

simulators and the current state of MANET simulations. It also covered the Click

software architecture since Click was used to gather the physical test bed data that was

later used to develop the simulation environment. Chapter Three explained the simulation

environment that was developed and the various workloads and parameters that would be

a part of it. Chapter Four detailed the experiments that were conducted and provided

analysis on the resulting data. This data was analyzed for trends and the conclusions were

offered based off these identified trends.

 This thesis demonstrates the capability to simulate MANET protocols in close

alignment with their real world deployments. In particular the propagation of the wireless

signal can be altered to mimic specific radios and environments that do affect the

propagation pattern in the real world. The ability to take the same setup, e.g. propagation

coverage area, signal strength, etc, in the physical world and then apply them to the

5-2

simulation is very important when creating MANET models. The benefits that

researchers will see by implementing more realistic techniques in generating these

models are a better understanding of MANET routing, coverage areas, efficiency, and

overall performance of the protocol.

 The testing done in Chapter Four demonstrates that current MANET simulations

that assume the axioms defined by Kotz et al. do overlook key aspects of the MANET

protocols. Most notably the propagation observed in the physical world when applied to

the simulation allows for an accurate deployment of MANET nodes. The ability to

generate propagation models that mimic a specific real world wireless radio signal will

assist researchers and developers in deploying realistic MANETs that can effectively and

efficiently route traffic.

5.2. Future Research

 This work has laid the foundation for future efforts in attaining realistic MANET

simulations. While this work focused on NS-2 and Click technologies, the techniques and

methodology discussed can be utilized for other simulation and MANET technology

research. Specifically regarding the research conducted in this thesis, the next step would

be to extend this work by testing other existing MANET protocols or developing new

protocols within Click. These can then be tested in the physical test bed and NS-2

simulation environment. There exists a need for other assumed axiom evaluations such as

a seventh axiom, which would be the “Trustworthiness of nodes” axiom. Since most

MANET simulations assume that a node will route traffic to its neighbors with no

malicious intent, this assumed axiom can be evaluated to determine if a malicious node

negatively affects a MANET deployment and the levels at which a malicious node might

be tolerated.

A-1

Appendix A: Acronyms List

AFIT – Air Force Institute of Technology

AODV – Ad-hoc On-demand Distance Vector

AP – Access Point

APProxy – Asymmetric Propagation Proxy

CBR – Constant Bit Rate

CUT – Component Under Test

DBF – Distributed Bellman Ford

DSDV – Destination-Sequenced Distance Vector

DSR – Dynamic Source Routing

DYMO – Dynamic MANET On-demand

FIFO – First In First Out

GloMoSim – Global Mobile Information Systems Simulation Library

HW – Hardware

ICMP – Internet Control Message Protocol

IETF – Internet Engineering Task Force

IP – Internet Protocol

MAC – Media Access Control

MANET – Mobile Ad-hoc NETwork

MIT – Massachusetts Institute of Technology

NAM – Network Animator

NIC – Network Interface Card

NS – Network Simulator

OFTB – Open Field Test Bed

OLSR – Optimized Link State Routing

OPNET – Optimized Network Engineering Tools

OSI – Open System Interconnection

PD% – Packet Delivery Percent

PMP – Proactive MANET Protocol

RFC – Request For Comments

RMP – Reactive MANET Protocol

RREQ – Route Request

Rx – Receive

SA – Situational Awareness

SUT – System Under Test

SWAN – Simulator for Wireless Ad-hoc Networks

TCP – Transmission Control Protocol

TORA – Temporally Ordered Routing Algorithm

Tx – Transmit

UDP – User Datagram Protocol

B-1

Appendix B: DSDV Click Configuration Code

Directed Graph

DSR Click Directed Graph [14]

Code for the Physical Nodes

All code comments are in blue font while Click code remains in standard black font.

// This file generated with the following command:

// make-dsdv-config.pl -i wlan1 -a 10.0.0.1 -u

// this configuration performs routing lookup *after* the interface

// queue, and only works with one interface.

AddressInfo(me 10.0.0.1 00:20:a6:61:58:a5);

B-2

elementclass TTLChecker {

 // expects grid packets with MAC headers --- place on output path to

 // decrement the IP TTL for next hop and provide traceroute support.

 // push -> push

 // output [0] passes through the Grid MAC packets

 // output [1] produces ICMP error packets to be passed back to IP

 // routing layer

 input -> cl :: Classifier(19/03, -);

 cl [1] -> output; // don't try to dec ttl for non-IP packets...

 cl [0]

 -> MarkIPHeader(82)

 -> cl2 :: IPClassifier(src host != me, -);

 cl2 [0]-> dec :: DecIPTTL; // only decrement ttl for packets we don't

originate

 cl2 [1] -> output;

 dec [0] -> output;

 dec [1] -> ICMPError(me, 11, 0) -> [1] output;

};

li :: GridLocationInfo2(0, 0, LOC_GOOD false);

elementclass FixupGridHeaders {

 $li | // LocationInfo element

 input

 -> FixSrcLoc($li)

 -> SetGridChecksum

 -> output;

};

elementclass ToGridDev {

 // push, no output

 $dev |

 input -> cl :: Classifier(12/7ffe, // LinkStat 1

 12/7ffd, // LinkStat 2

 19/02, 19/03);

 prio :: PrioSched;

 cl [0] -> probe_counter :: Counter -> probe_q :: Queue(5) -> [0]

prio;

 cl [1] -> probe_counter;

 cl [2] -> route_counter :: Counter -> route_q :: Queue(5) ->

FixupGridHeaders(li) -> [1] prio;

 cl [3] -> data_counter :: Counter -> data_q :: Queue(5)

 -> data_counter_out :: Counter

 -> tr :: TimeRange

 -> lr :: LookupLocalGridRoute2(me:eth, me:ip, nb)

 -> FixupGridHeaders(li)

 -> data_counter_out2 :: Counter

 -> tr2 :: TimeRange

 -> [2] prio;

 prio

 -> dev_counter :: Counter

 -> t :: PullTee

 -> ToDevice($dev);

B-3

 t [1] -> SetTimestamp -> Discard;

};

elementclass FromGridDev {

 // push, no input

 // `Grid' packets on first output

 // `LinkStat' packets on second output

 $dev, $mac |

 FromDevice($dev, PROMISC false)

 -> t :: Tee

 -> HostEtherFilter($mac, DROP_OWN true)

 -> cl :: Classifier(12/7fff, 12/7ffe, 12/7ffd, -);

 cl [0] // `Grid' packets

 -> ck :: CheckGridHeader

 -> [0] output;

 cl [1] // `LinkStat 1' packets

 -> [1] output;

 cl [2] // `LinkStat 2' packets

 -> [1] output;

 cl [3] // everything else

 -> [2] output;

 t [1] -> Discard;

 ck [1] -> Print('Bad Grid header received', TIMESTAMP true, MAXLENGTH

166) -> Discard;

};

elementclass GridLoad {

 // push, no input

 // DATASIZE should be the size of the desired UDP packet (including

 // ethernet, Grid, and IP headers), plus 2 for alignment. It must

 // be at least 120. Most of this is stripped off to be re-used

 // later, avoiding expensive pushes in the UDP/IP and Grid

 // encapsulation.

 src :: InfiniteSource(ACTIVE false, DATASIZE 120)

 -> Strip(112) // 14 + 60 + 8 + 20 + 8 + 2 = 112

 // (eth + grid + grid_encap + ip + udp + 2 for

alignment)

 -> seq :: IncrementSeqNo(FIRST 0, OFFSET 0)

 -> SetIPAddress(me)

 -> StoreIPAddress(4)

 -> udp :: UDPIPEncap(me, 1111, 0.0.0.0, 8021)

 -> count :: Counter

 -> tr :: TimeRange

 -> output;

 sc :: Script;

}

ls2 :: Idle;

ls :: LinkStat(ETH me:eth, SIZE 148);

metric :: HopcountMetric();

nb :: DSDVRouteTable(60000, 15000, 7500, 1000,

 me:eth, me:ip,

 MAX_HOPS 100,

 METRIC metric,

 VERBOSE false

B-4

);

grid_demux :: Classifier(19/03, // encapsulated (data) packets

 19/02); // route advertisement packets

arp_demux :: Classifier(12/0806 20/0001, // arp queries

 12/0800); // IP packets

// handles IP packets with no extra encapsulation

ip_demux :: IPClassifier(dst host me, // ip for us

 dst net me/24); // ip for Grid network

// handles IP packets with Grid data encapsulation

grid_data_demux :: IPClassifier(dst host me, // ip for us

 dst net me/24); // ip for Grid network

// dev0

dev0 :: ToGridDev(wlan1);

from_dev0 :: FromGridDev(wlan1, me:eth)

from_dev0 [0] -> Paint(0) -> grid_demux

from_dev0 [1] -> Paint(0) -> probe_cl :: Classifier(12/7ffe, 12/7ffd);

probe_cl [0] -> ls -> probe_switch :: Switch(-1) -> dev0;

probe_cl [1] -> ls2 -> probe_switch;

// support for traceroute

dec_ip_ttl :: TTLChecker -> dev0;

dec_ip_ttl [1] -> ip_demux;

grid_demux [0] -> CheckIPHeader(, 82) -> grid_data_demux;

grid_demux [1] -> nb -> dev0;

ip_input :: CheckIPHeader -> GetIPAddress(16) -> ip_demux;

to_host_encap :: KernelTun(me/24, HEADROOM 68, MTU 1432) -> ip_input;

from_dev0 [2] -> Discard;

ip_demux [0] -> to_host_encap; // loopback packet sent by us, required

on BSD userlevel

ip_demux [1] -> GridEncap(me:eth, me:ip) -> dec_ip_ttl; // forward

packet sent by us

grid_data_demux [0] -> Strip(82) -> to_host_encap; // receive packet

from net for us

grid_data_demux [1] -> dec_ip_ttl; //

forward packet from net for someone else

// UDP packet generator

load :: GridLoad -> ip_input;

C-1

Appendix C: DSR Click Configuration Code

Clicky generated Directed Graph

Figure C-1. DSR directed graph – generated through Clicky

Code for the Physical Nodes

All code comments are in blue font while Click code remains in standard black font.

C-2

AddressInfo(me0 10.0.0.1);

AddressInfo(my_ether 00:20:a6:61:58:a5);

rt_q2 :: SimpleQueue(10); // just ahead of todevice

dsr_ls :: LinkStat(ETH my_ether, SIZE 148) -> rt_q0 :: Queue(5);

dsr_lt :: LinkTable(IP me0);

dsr_rt :: DSRRouteTable(me0, dsr_lt, OUTQUEUE rt_q2, USE_BLACKLIST 1);

dsr_arp :: DSRArpTable(me0, my_ether);

in1 :: FromDevice(wlan1, PROMISC 0);

dsr_filter :: HostEtherFilter(my_ether,1);

in_cl :: Classifier(12/7FFF, -);

in_cl[0] -> dsr_ls;

// [1]dsr_arp takes incoming packets, and passes them through

// unchanged to output 1, adding entries to an ARP table

in1 -> in_cl;

in_cl[1] -> dsr_filter; // non-probes

// packets destined for this host

kt :: KernelTun(me0/24);

kt -> icmp_cl :: Classifier(20/0302, -);

icmp_cl[0] -> Discard; // icmp 'protocol not supported'

icmp_cl[1] -> IPPrint(0rt, CONTENTS true, NBYTES 128) ->

[0]dsr_rt[0] -> CheckIPHeader ->

 IPPrint(rt0, CONTENTS true, NBYTES 128) ->

 setup_cl :: IPClassifier(udp port 8022, -);

setup_cl[0] -> Print(setup) -> Discard;

setup_cl[1] -> kt;

ls_prio :: PrioSched -> ToDevice(wlan1);

dsr_filter[0] -> CheckIPHeader(14) -> [2]dsr_arp;

// drop packets with my ethernet source address

dsr_filter[1] -> // Print(Mine) ->

 Discard;

dsr_arp[2] -> Print(_in, NBYTES 192) ->

 Strip(14) ->

 IPPrint ->

 CheckIPHeader() ->

 MarkIPHeader() ->

 GetIPAddress(16) ->

 DSR_class :: Classifier(09/C8, -); // DSR packets

DSR_class[0] -> // Print(DSR) ->

 [1]dsr_rt;

C-3

DSR_class[1] -> // Print(Other) ->

 Discard;

// packets to send out on the wireless; dsr_arp puts on the ethernet

// header based on its ARP table

td_prio :: PrioSched;

dsr_rt[1] -> rt_q1 :: Queue(20) -> [0]td_prio;

dsr_rt[2] -> rt_q2 -> [1]td_prio;

td_prio -> [0]dsr_arp;

Idle -> [1] dsr_arp [1] -> Idle;

Idle -> [0]ls_prio;

rt_q0 -> Discard;

dsr_arp[0] -> Print(out, NBYTES 192) ->

 [1]ls_prio;

// packet spewer for throughput tests.

spew :: RatedSource(ACTIVE false, RATE 700, DATA

'00

00')

 -> Strip(42) // 14 + 20 + 8 = 42

 // (eth + ip + udp)

 -> seq :: IncrementSeqNo(FIRST 0, OFFSET 0)

 -> SetIPAddress(me0)

 -> StoreIPAddress(4)

 -> udp :: UDPIPEncap(me0, 1111, 0.0.0.0, 8021)

 -> CheckIPHeader

 -> GetIPAddress(16)

 -> [0]dsr_rt;

// setup the DSR source route

setup :: RatedSource(ACTIVE false, RATE 1, DATA 'xxx')

 -> SetIPAddress(me0)

 -> StoreIPAddress(4)

 -> udp2 :: UDPIPEncap(me0, 1111, 0.0.0.0, 8022)

 -> CheckIPHeader

 -> GetIPAddress(16)

 -> [0]dsr_rt;

Idle -> [2]dsr_rt;

D-1

Appendix D: NS-2 Simulation scenarios (TCL scripts)

 These scripts were created by combining previous written code with the in-house

developed code. This code has not been extensively tested to be “bug-free” and may

cause issues with other systems. It is provided “AS IS” and no guarantees are expressed

or implied with it. DSDVegg.tcl is the only scenario file listed in this appendix that

details the code needed to run the simulations that generated the traffic results. All other

simulations that generated traffic results were very similar to this script and only deviated

per the settings discussed in Chapter Four. DSDVapproxy.tcl, Initialize.tcl,

WriteOuptut.tcl, and Simulate.tcl are the only scenario files listed in this appendix that

detail the code used to generate the propagation results. All other simulations that

generated propagation results were very similar to these scripts and only deviated per the

settings discussed in Chapter Four. Comments are in blue font for all scripts.

TCPegg.tcl

Copyright (c) 1997 Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the

documentation and/or other materials provided with the

distribution.

3. All advertising materials mentioning features or use of this

software

must display the following acknowledgement:

This product includes software developed by the Computer Systems

Engineering Group at Lawrence Berkeley Laboratory.

4. Neither the name of the University nor of the Laboratory may be

used

to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''

AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

D-2

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF

SUCH DAMAGE.

==

Define options

==

set val(chan) Channel/WirelessChannel ;# channel type

set val(netif) Phy/WirelessPhy ;# network interface

type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue

type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 500 ;# max packet in ifq

set val(nn) 20 ;# number of

mobilenodes

set val(rp) DSDV ;# routing protocol

==

Main Program

==

Initialize Global Variables

set ns_ [new Simulator]

set stoptime 32

set up topography object

set xsize 120

set ysize 120

set topo [new Topography] $topo load_flatgrid $xsize $ysize

Create and activate trace files.

set tracefd [open "dsdvegg.tr" w]

set namtrace [open "dsdvegg.nam" w]

$ns_ trace-all $tracefd

D-3

$ns_ namtrace-all-wireless $namtrace $xsize $ysize

Create God

set god_ [create-god $val(nn)]

#set up signal propagation

$val(mac) set dataRate_ 11Mb

$val(mac) set basicRate_ 1Mb

Propagation/APProxy set minRandomGain_ 0;

Propagation/APProxy set maxRandomGain_ 0;

Propagation/APProxy set maxGain_ 10.0;

Propagation/APProxy set angleNumber_ 6;

$val(netif) set Pt_ 0.2818

$val(netif) set CPThresh_ 10.0

$val(netif) set CSThresh_ 5.011872e-12

$val(netif) set RXThresh_ 5.82587e-09

$val(ant) set Gt_ 1.0

$val(ant) set Gr_ 1.0

$val(netif) set freq_ 2.412e9

$val(netif) set L_ 1.0

Propagation/Shadowing set pathlossExp_ 2.0

Propagation/Shadowing set std_db_ 2.8

Propagation/Shadowing set dist0_ 1.0

set opt(propInstance) [new Propagation/APProxy]

$opt(propInstance) propagation [new Propagation/Shadowing]

$opt(propInstance) profile [expr [expr 31*31-1] /2] 0 1 0 0 .5 0

Create the specified number of mobilenodes [$val(nn)] and "attach"

them

to the channel.

configure node

 $ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propInstance $opt(propInstance) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace OFF

D-4

 for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $ns_ initial_node_pos $node_($i) 5 ; # size the nodes for

nam

 $node_($i) random-motion 0 ; # disable random

motion

 }

Provide (X,Y,Z=0) coordinates for nodes

$node_(0) set X_ 60.0

$node_(0) set Y_ 60.0

$node_(0) set Z_ 0.0

$node_(1) set X_ 72

$node_(1) set Y_ 117

$node_(1) set Z_ 0.0

#189.1

$ns_ at 0.1 "$node_(0) setdest 60 60 0"

$ns_ at 0.1 "$node_(1) setdest 72 117 0"

#186.8

$ns_ at 0.1 "$node_(2) setdest 82 113 500"

#183.7

$ns_ at 0.1 "$node_(3) setdest 92 107 500"

#170.6

$ns_ at 0.1 "$node_(4) setdest 99 96 500"

#171.9

$ns_ at 0.1 "$node_(5) setdest 104 90 500"

#161

$ns_ at 0.1 "$node_(6) setdest 107 77 500"

#139

$ns_ at 0.1 "$node_(7) setdest 103 61 500"

#130.4

$ns_ at 0.1 "$node_(8) setdest 98 47 500"

#134.1

$ns_ at 0.1 "$node_(9) setdest 91 33 500"

#134.9

$ns_ at 0.1 "$node_(10) setdest 76 23 500"

#160.1

$ns_ at 0.1 "$node_(11) setdest 61 12 500"

#167.4

$ns_ at 0.1 "$node_(12) setdest 48 11 500"

#176.1

$ns_ at 0.1 "$node_(13) setdest 32 15 500"

#172.6

$ns_ at 0.1 "$node_(14) setdest 18 30 500"

#155.1

$ns_ at 0.1 "$node_(15) setdest 15 51 500"

#138.4

$ns_ at 0.1 "$node_(16) setdest 21 73 500"

#131

$ns_ at 0.1 "$node_(17) setdest 29 85 500"

#132.9

$ns_ at 0.1 "$node_(18) setdest 40 96 500"

D-5

#154.7

$ns_ at 0.1 "$node_(19) setdest 52 107 500"

set startxmittime 10

set tcp [new Agent/TCP]

$tcp set class_ 2

set sink [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp

$ns_ attach-agent $node_(1) $sink

$ns_ connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns_ at [expr $startxmittime + 0.1] "$ftp start"

$ns_ at [expr $startxmittime + 1.0] "$ftp stop"

set tcp2 [new Agent/TCP]

$tcp2 set class_ 2

set sink2 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp2

$ns_ attach-agent $node_(2) $sink2

$ns_ connect $tcp2 $sink2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp2

$ns_ at [expr $startxmittime + 1.1] "$ftp2 start"

$ns_ at [expr $startxmittime + 2.0] "$ftp2 stop"

set tcp3 [new Agent/TCP]

$tcp3 set class_ 2

set sink3 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp3

$ns_ attach-agent $node_(3) $sink3

$ns_ connect $tcp3 $sink3

set ftp3 [new Application/FTP]

$ftp3 attach-agent $tcp3

$ns_ at [expr $startxmittime + 2.1] "$ftp3 start"

$ns_ at [expr $startxmittime + 3.0] "$ftp3 stop"

set tcp4 [new Agent/TCP]

$tcp4 set class_ 2

set sink4 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp4

$ns_ attach-agent $node_(4) $sink4

$ns_ connect $tcp4 $sink4

set ftp4 [new Application/FTP]

$ftp4 attach-agent $tcp4

$ns_ at [expr $startxmittime + 3.1] "$ftp4 start"

$ns_ at [expr $startxmittime + 4.0] "$ftp4 stop"

set tcp5 [new Agent/TCP]

$tcp5 set class_ 2

set sink5 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp5

$ns_ attach-agent $node_(5) $sink5

$ns_ connect $tcp5 $sink5

set ftp5 [new Application/FTP]

$ftp5 attach-agent $tcp5

D-6

$ns_ at [expr $startxmittime + 4.1] "$ftp5 start"

$ns_ at [expr $startxmittime + 5.0] "$ftp5 stop"

set tcp6 [new Agent/TCP]

$tcp6 set class_ 2

set sink6 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp6

$ns_ attach-agent $node_(6) $sink6

$ns_ connect $tcp6 $sink6

set ftp6 [new Application/FTP]

$ftp6 attach-agent $tcp6

$ns_ at [expr $startxmittime + 5.1] "$ftp6 start"

$ns_ at [expr $startxmittime + 6.0] "$ftp6 stop"

set tcp7 [new Agent/TCP]

$tcp7 set class_ 2

set sink7 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp7

$ns_ attach-agent $node_(7) $sink7

$ns_ connect $tcp7 $sink7

set ftp7 [new Application/FTP]

$ftp7 attach-agent $tcp7

$ns_ at [expr $startxmittime + 6.1] "$ftp7 start"

$ns_ at [expr $startxmittime + 7.0] "$ftp7 stop"

set tcp8 [new Agent/TCP]

$tcp8 set class_ 2

set sink8 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp8

$ns_ attach-agent $node_(8) $sink8

$ns_ connect $tcp8 $sink8

set ftp8 [new Application/FTP]

$ftp8 attach-agent $tcp8

$ns_ at [expr $startxmittime + 7.1] "$ftp8 start"

$ns_ at [expr $startxmittime + 8.0] "$ftp8 stop"

set tcp9 [new Agent/TCP]

$tcp9 set class_ 2

set sink9 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp9

$ns_ attach-agent $node_(9) $sink9

$ns_ connect $tcp9 $sink9

set ftp9 [new Application/FTP]

$ftp9 attach-agent $tcp9

$ns_ at [expr $startxmittime + 8.1] "$ftp9 start"

$ns_ at [expr $startxmittime + 9.0] "$ftp9 stop"

set tcp10 [new Agent/TCP]

$tcp10 set class_ 2

set sink10 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp10

$ns_ attach-agent $node_(10) $sink10

$ns_ connect $tcp10 $sink10

set ftp10 [new Application/FTP]

$ftp10 attach-agent $tcp10

$ns_ at [expr $startxmittime + 9.1] "$ftp10 start"

$ns_ at [expr $startxmittime + 10.0] "$ftp10 stop"

D-7

set tcp11 [new Agent/TCP]

$tcp11 set class_ 2

set sink11 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp11

$ns_ attach-agent $node_(11) $sink11

$ns_ connect $tcp11 $sink11

set ftp11 [new Application/FTP]

$ftp11 attach-agent $tcp11

$ns_ at [expr $startxmittime + 10.1] "$ftp11 start"

$ns_ at [expr $startxmittime + 11.0] "$ftp11 stop"

set tcp12 [new Agent/TCP]

$tcp12 set class_ 2

set sink12 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp12

$ns_ attach-agent $node_(12) $sink12

$ns_ connect $tcp12 $sink12

set ftp12 [new Application/FTP]

$ftp12 attach-agent $tcp12

$ns_ at [expr $startxmittime + 11.1] "$ftp12 start"

$ns_ at [expr $startxmittime + 12.0] "$ftp12 stop"

set tcp13 [new Agent/TCP]

$tcp13 set class_ 2

set sink13 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp13

$ns_ attach-agent $node_(13) $sink13

$ns_ connect $tcp13 $sink13

set ftp13 [new Application/FTP]

$ftp13 attach-agent $tcp13

$ns_ at [expr $startxmittime + 12.1] "$ftp13 start"

$ns_ at [expr $startxmittime + 13.0] "$ftp13 stop"

set tcp14 [new Agent/TCP]

$tcp14 set class_ 2

set sink14 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp14

$ns_ attach-agent $node_(14) $sink14

$ns_ connect $tcp14 $sink14

set ftp14 [new Application/FTP]

$ftp14 attach-agent $tcp14

$ns_ at [expr $startxmittime + 13.1] "$ftp14 start"

$ns_ at [expr $startxmittime + 14.0] "$ftp14 stop"

set tcp15 [new Agent/TCP]

$tcp15 set class_ 2

set sink15 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp15

$ns_ attach-agent $node_(15) $sink15

$ns_ connect $tcp15 $sink15

set ftp15 [new Application/FTP]

$ftp15 attach-agent $tcp15

$ns_ at [expr $startxmittime + 14.1] "$ftp15 start"

$ns_ at [expr $startxmittime + 15.0] "$ftp15 stop"

set tcp16 [new Agent/TCP]

D-8

$tcp16 set class_ 2

set sink16 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp16

$ns_ attach-agent $node_(16) $sink16

$ns_ connect $tcp16 $sink16

set ftp16 [new Application/FTP]

$ftp16 attach-agent $tcp16

$ns_ at [expr $startxmittime + 15.1] "$ftp16 start"

$ns_ at [expr $startxmittime + 16.0] "$ftp16 stop"

set tcp17 [new Agent/TCP]

$tcp17 set class_ 2

set sink17 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp17

$ns_ attach-agent $node_(17) $sink17

$ns_ connect $tcp17 $sink17

set ftp17 [new Application/FTP]

$ftp17 attach-agent $tcp17

$ns_ at [expr $startxmittime + 16.1] "$ftp17 start"

$ns_ at [expr $startxmittime + 17.0] "$ftp17 stop"

set tcp18 [new Agent/TCP]

$tcp18 set class_ 2

set sink18 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp18

$ns_ attach-agent $node_(18) $sink18

$ns_ connect $tcp18 $sink18

set ftp18 [new Application/FTP]

$ftp18 attach-agent $tcp18

$ns_ at [expr $startxmittime + 17.1] "$ftp18 start"

$ns_ at [expr $startxmittime + 18.0] "$ftp18 stop"

set tcp19 [new Agent/TCP]

$tcp19 set class_ 2

set sink19 [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $tcp19

$ns_ attach-agent $node_(19) $sink19

$ns_ connect $tcp19 $sink19

set ftp19 [new Application/FTP]

$ftp19 attach-agent $tcp19

$ns_ at [expr $startxmittime + 18.1] "$ftp19 start"

$ns_ at [expr $startxmittime + 19.0] "$ftp19 stop"

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $stoptime.0 "$node_($i) reset";

}

proc stop {} {

 global ns_ tracefd

 $ns_ flush-trace

 close $tracefd

 global ns_ namtrace

 $ns_ flush-trace

 close $namtrace

D-9

}

$ns_ at $stoptime "stop"

$ns_ at $stoptime.01 "puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."

$ns_ run

CBRegg.tcl

 Due to reasons unknown, the CBR traffic could only operate on 7 nodes

maximum per TCL script. Even though it is represented as one script in this appendix, in

order for it to run in the NS-2 environment developed for this thesis it had to be divided

into three different scripts.

Copyright (c) 1997 Regents of the University of California.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the

documentation and/or other materials provided with the

distribution.

3. All advertising materials mentioning features or use of this

software

must display the following acknowledgement:

This product includes software developed by the Computer Systems

Engineering Group at Lawrence Berkeley Laboratory.

4. Neither the name of the University nor of the Laboratory may be

used

to endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''

AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT

D-10

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF

SUCH DAMAGE.

==

Define options

==

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation

model

set val(netif) Phy/WirelessPhy ;# network interface

type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue

type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 20 ;# number of

mobilenodes

set val(rp) DSDV ;# routing protocol

==

Main Program

==

Initialize Global Variables

set ns_ [new Simulator]

set stoptime 32

set up topography object

set xsize 120

set ysize 120

set topo [new Topography] $topo load_flatgrid $xsize $ysize

Create and activate trace files.

set tracefd [open "dsdvegg3.tr" w]

set namtrace [open "dsdvegg3.nam" w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $xsize $ysize

Create God

set god_ [create-god $val(nn)]

$val(mac) set dataRate_ 11Mb

$val(mac) set basicRate_ 1Mb

D-11

Propagation/APProxy set minRandomGain_ 0;

Propagation/APProxy set maxRandomGain_ 0;

Propagation/APProxy set maxGain_ 10.0;

Propagation/APProxy set angleNumber_ 6;

$val(netif) set Pt_ .2018

$val(netif) set CPThresh_ 10.0

$val(netif) set CSThresh_ 5.011872e-12

$val(netif) set RXThresh_ 5.82587e-09

$val(ant) set Gt_ 1.0

$val(ant) set Gr_ 1.0

$val(netif) set freq_ 2.412e9

$val(netif) set L_ 1.0

set opt(propInstance) [new Propagation/APProxy]

$opt(propInstance) propagation [new Propagation/TwoRayGround]

$opt(propInstance) profile [expr [expr 31*31-1] /2] 0 1 0 0 .5 0

Create the specified number of mobilenodes [$val(nn)] and "attach"

them

to the channel.

configure node

 $ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propInstance $opt(propInstance) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace OFF

 for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $ns_ initial_node_pos $node_($i) 5 ; # size the nodes for

nam

 $node_($i) random-motion 0 ; # disable random

motion

 }

Provide initial (X,Y, for now Z=0) coordinates for mobilenodes

$node_(0) set X_ 60.0

$node_(0) set Y_ 60.0

$node_(0) set Z_ 0.0

D-12

$node_(1) set X_ 72

$node_(1) set Y_ 117

$node_(1) set Z_ 0.0

#189.1

$ns_ at 0.1 "$node_(0) setdest 60 60 0"

$ns_ at 0.1 "$node_(1) setdest 72 117 0"

#186.8

$ns_ at 0.1 "$node_(2) setdest 82 113 500"

#183.7

$ns_ at 0.1 "$node_(3) setdest 92 107 500"

#170.6

$ns_ at 0.1 "$node_(4) setdest 99 96 500"

#171.9

$ns_ at 0.1 "$node_(5) setdest 104 90 500"

#161

$ns_ at 0.1 "$node_(6) setdest 107 77 500"

#139

$ns_ at 0.1 "$node_(7) setdest 103 61 500"

#130.4

$ns_ at 0.1 "$node_(8) setdest 98 47 500"

#134.1

$ns_ at 0.1 "$node_(9) setdest 91 33 500"

#134.9

$ns_ at 0.1 "$node_(10) setdest 76 23 500"

#160.1

$ns_ at 0.1 "$node_(11) setdest 61 12 500"

#167.4

$ns_ at 0.1 "$node_(12) setdest 48 11 500"

#176.1

$ns_ at 0.1 "$node_(13) setdest 32 15 500"

#172.6

$ns_ at 0.1 "$node_(14) setdest 18 30 500"

#155.1

$ns_ at 0.1 "$node_(15) setdest 15 51 500"

#138.4

$ns_ at 0.1 "$node_(16) setdest 21 73 500"

#131

$ns_ at 0.1 "$node_(17) setdest 29 85 500"

#132.9

$ns_ at 0.1 "$node_(18) setdest 40 96 500"

#154.7

$ns_ at 0.1 "$node_(19) setdest 52 107 500"

set startxmittime 10

#Create a UDP agent and attach it to node n0

set udp0 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp0

Create a CBR traffic source and attach it to udp0

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent $udp0

D-13

set null0 [new Agent/Null]

$ns_ attach-agent $node_(1) $null0

$ns_ connect $udp0 $null0

$ns_ at [expr $startxmittime + 0.1] "$cbr0 start"

$ns_ at [expr $startxmittime + 1.0] "$cbr0 stop"

#Create a UDP agent and attach it to node n0

set udp1 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp1

Create a CBR traffic source and attach it to udp0

set cbr1 [new Application/Traffic/CBR]

$cbr1 set packetSize_ 500

$cbr1 set interval_ 0.005

$cbr1 attach-agent $udp1

set null1 [new Agent/Null]

$ns_ attach-agent $node_(2) $null1

$ns_ connect $udp1 $null1

$ns_ at [expr $startxmittime + 1.1] "$cbr1 start"

$ns_ at [expr $startxmittime + 2.0] "$cbr1 stop"

#Create a UDP agent and attach it to node n0

set udp2 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp2

Create a CBR traffic source and attach it to udp0

set cbr2 [new Application/Traffic/CBR]

$cbr2 set packetSize_ 500

$cbr2 set interval_ 0.005

$cbr2 attach-agent $udp2

set null2 [new Agent/Null]

$ns_ attach-agent $node_(3) $null2

$ns_ connect $udp2 $null2

$ns_ at [expr $startxmittime + 2.1] "$cbr2 start"

$ns_ at [expr $startxmittime + 3.0] "$cbr2 stop"

#Create a UDP agent and attach it to node n0

set udp3 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp3

Create a CBR traffic source and attach it to udp0

set cbr3 [new Application/Traffic/CBR]

$cbr3 set packetSize_ 500

$cbr3 set interval_ 0.005

$cbr3 attach-agent $udp3

set null3 [new Agent/Null]

$ns_ attach-agent $node_(4) $null3

$ns_ connect $udp3 $null3

$ns_ at [expr $startxmittime + 3.1] "$cbr3 start"

$ns_ at [expr $startxmittime + 4.0] "$cbr3 stop"

#Create a UDP agent and attach it to node n0

set udp4 [new Agent/UDP]

D-14

$ns_ attach-agent $node_(0) $udp4

Create a CBR traffic source and attach it to udp0

set cbr4 [new Application/Traffic/CBR]

$cbr4 set packetSize_ 500

$cbr4 set interval_ 0.005

$cbr4 attach-agent $udp4

set null4 [new Agent/Null]

$ns_ attach-agent $node_(5) $null4

$ns_ connect $udp4 $null4

$ns_ at [expr $startxmittime + 4.1] "$cbr4 start"

$ns_ at [expr $startxmittime + 5.0] "$cbr4 stop"

#Create a UDP agent and attach it to node n0

set udp5 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp5

Create a CBR traffic source and attach it to udp0

set cbr5 [new Application/Traffic/CBR]

$cbr5 set packetSize_ 500

$cbr5 set interval_ 0.005

$cbr5 attach-agent $udp5

set null5 [new Agent/Null]

$ns_ attach-agent $node_(6) $null5

$ns_ connect $udp5 $null5

$ns_ at [expr $startxmittime + 5.1] "$cbr5 start"

$ns_ at [expr $startxmittime + 6.0] "$cbr5 stop"

#Create a UDP agent and attach it to node n0

set udp6 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp6

Create a CBR traffic source and attach it to udp0

set cbr6 [new Application/Traffic/CBR]

$cbr6 set packetSize_ 500

$cbr6 set interval_ 0.005

$cbr6 attach-agent $udp6

set null6 [new Agent/Null]

$ns_ attach-agent $node_(7) $null6

$ns_ connect $udp6 $null6

$ns_ at [expr $startxmittime + 6.1] "$cbr6 start"

$ns_ at [expr $startxmittime + 7.0] "$cbr6 stop"

#Create a UDP agent and attach it to node n0

set udp7 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp7

Create a CBR traffic source and attach it to udp0

set cbr7 [new Application/Traffic/CBR]

$cbr7 set packetSize_ 500

$cbr7 set interval_ 0.005

$cbr7 attach-agent $udp7

set null7 [new Agent/Null]

D-15

$ns_ attach-agent $node_(8) $null7

$ns_ connect $udp7 $null7

$ns_ at [expr $startxmittime + 7.1] "$cbr7 start"

$ns_ at [expr $startxmittime + 8.0] "$cbr7 stop"

#Create a UDP agent and attach it to node n0

set udp8 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp8

Create a CBR traffic source and attach it to udp0

set cbr8 [new Application/Traffic/CBR]

$cbr8 set packetSize_ 500

$cbr8 set interval_ 0.005

$cbr8 attach-agent $udp8

set null8 [new Agent/Null]

$ns_ attach-agent $node_(9) $null8

$ns_ connect $udp8 $null8

$ns_ at [expr $startxmittime + 8.1] "$cbr8 start"

$ns_ at [expr $startxmittime + 9.0] "$cbr8 stop"

#Create a UDP agent and attach it to node n0

set udp9 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp9

Create a CBR traffic source and attach it to udp0

set cbr9 [new Application/Traffic/CBR]

$cbr9 set packetSize_ 500

$cbr9 set interval_ 0.005

$cbr9 attach-agent $udp9

set null9 [new Agent/Null]

$ns_ attach-agent $node_(10) $null9

$ns_ connect $udp9 $null9

$ns_ at [expr $startxmittime + 9.1] "$cbr9 start"

$ns_ at [expr $startxmittime + 10.0] "$cbr9 stop"

#Create a UDP agent and attach it to node n0

set udp10 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp10

Create a CBR traffic source and attach it to udp0

set cbr10 [new Application/Traffic/CBR]

$cbr10 set packetSize_ 500

$cbr10 set interval_ 0.005

$cbr10 attach-agent $udp10

set null10 [new Agent/Null]

$ns_ attach-agent $node_(11) $null10

$ns_ connect $udp10 $null10

$ns_ at [expr $startxmittime + 10.1] "$cbr10 start"

$ns_ at [expr $startxmittime + 11.0] "$cbr10 stop"

#Create a UDP agent and attach it to node n0

set udp11 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp11

D-16

Create a CBR traffic source and attach it to udp0

set cbr11 [new Application/Traffic/CBR]

$cbr11 set packetSize_ 500

$cbr11 set interval_ 0.005

$cbr11 attach-agent $udp11

set null11 [new Agent/Null]

$ns_ attach-agent $node_(12) $null11

$ns_ connect $udp11 $null11

$ns_ at [expr $startxmittime + 11.1] "$cbr11 start"

$ns_ at [expr $startxmittime + 12.0] "$cbr11 stop"

#Create a UDP agent and attach it to node n0

set udp12 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp12

Create a CBR traffic source and attach it to udp0

set cbr12 [new Application/Traffic/CBR]

$cbr12 set packetSize_ 500

$cbr12 set interval_ 0.005

$cbr12 attach-agent $udp12

set null12 [new Agent/Null]

$ns_ attach-agent $node_(13) $null12

$ns_ connect $udp12 $null12

$ns_ at [expr $startxmittime + 12.1] "$cbr12 start"

$ns_ at [expr $startxmittime + 13.0] "$cbr12 stop"

#Create a UDP agent and attach it to node n0

set udp13 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp13

Create a CBR traffic source and attach it to udp0

set cbr13 [new Application/Traffic/CBR]

$cbr13 set packetSize_ 500

$cbr13 set interval_ 0.005

$cbr13 attach-agent $udp13

set null13 [new Agent/Null]

$ns_ attach-agent $node_(14) $null13

$ns_ connect $udp13 $null13

$ns_ at [expr $startxmittime + 13.1] "$cbr13 start"

$ns_ at [expr $startxmittime + 14.0] "$cbr13 stop"

#Create a UDP agent and attach it to node n0

set udp14 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp14

Create a CBR traffic source and attach it to udp0

set cbr14 [new Application/Traffic/CBR]

$cbr14 set packetSize_ 500

$cbr14 set interval_ 0.005

$cbr14 attach-agent $udp14

set null14 [new Agent/Null]

$ns_ attach-agent $node_(15) $null14

$ns_ connect $udp14 $null14

D-17

$ns_ at [expr $startxmittime + 14.1] "$cbr14 start"

$ns_ at [expr $startxmittime + 15.0] "$cbr14 stop"

#Create a UDP agent and attach it to node n0

set udp15 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp15

Create a CBR traffic source and attach it to udp0

set cbr15 [new Application/Traffic/CBR]

$cbr15 set packetSize_ 500

$cbr15 set interval_ 0.005

$cbr15 attach-agent $udp15

set null15 [new Agent/Null]

$ns_ attach-agent $node_(16) $null15

$ns_ connect $udp15 $null15

$ns_ at [expr $startxmittime + 15.1] "$cbr15 start"

$ns_ at [expr $startxmittime + 16.0] "$cbr15 stop"

#Create a UDP agent and attach it to node n0

set udp16 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp16

Create a CBR traffic source and attach it to udp0

set cbr16 [new Application/Traffic/CBR]

$cbr16 set packetSize_ 500

$cbr16 set interval_ 0.005

$cbr16 attach-agent $udp16

set null16 [new Agent/Null]

$ns_ attach-agent $node_(17) $null16

$ns_ connect $udp16 $null16

$ns_ at [expr $startxmittime + 16.1] "$cbr16 start"

$ns_ at [expr $startxmittime + 17.0] "$cbr16 stop"

#Create a UDP agent and attach it to node n0

set udp17 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp17

Create a CBR traffic source and attach it to udp0

set cbr17 [new Application/Traffic/CBR]

$cbr17 set packetSize_ 500

$cbr17 set interval_ 0.005

$cbr17 attach-agent $udp17

set null17 [new Agent/Null]

$ns_ attach-agent $node_(18) $null17

$ns_ connect $udp17 $null17

$ns_ at [expr $startxmittime + 17.1] "$cbr17 start"

$ns_ at [expr $startxmittime + 18.0] "$cbr17 stop"

#Create a UDP agent and attach it to node n0

set udp18 [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp18

Create a CBR traffic source and attach it to udp0

set cbr18 [new Application/Traffic/CBR]

D-18

$cbr18 set packetSize_ 500

$cbr18 set interval_ 0.005

$cbr18 attach-agent $udp18

set null18 [new Agent/Null]

$ns_ attach-agent $node_(19) $null18

$ns_ connect $udp18 $null18

$ns_ at [expr $startxmittime + 18.1] "$cbr18 start"

$ns_ at [expr $startxmittime + 19.0] "$cbr18 stop"

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $stoptime.0 "$node_($i) reset";

}

proc stop {} {

 global ns_ tracefd

 $ns_ flush-trace

 close $tracefd

 global ns_ namtrace

 $ns_ flush-trace

 close $namtrace

}

$ns_ at $stoptime "stop"

$ns_ at $stoptime.01 "puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."

$ns_ run

APProxy.tcl

customize simulation

set gridX 31; # number of nodes in a horizontal line

set gridY 31; # number of nodes in a vertical line

set numberOfPackets 2000; # packets used for sending

set opt(width) 200; # topography width

set opt(height) 200; # topography height

Propagation/APProxy set minRandomGain_ 0;

Propagation/APProxy set maxRandomGain_ 0;

Propagation/APProxy set maxGain_ 10.0;

Propagation/APProxy set angleNumber_ 6;

parameters for shadowing

Phy/WirelessPhy set Pt_ 0.15

Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 5.011872e-12

Antenna/OmniAntenna set Gt_ 1.0

Antenna/OmniAntenna set Gr_ 1.0

Phy/WirelessPhy set freq_ 2.412e9

Phy/WirelessPhy set L_ 1.0

Propagation/Shadowing set pathlossExp_ 2.0

Propagation/Shadowing set std_db_ 2.8

Propagation/Shadowing set dist0_ 1.0

D-19

Phy/WirelessPhy set RXThresh_ 3.3e-8

set approxy propagation model

set opt(propInstance) [new Propagation/APProxy]

$opt(propInstance) propagation [new Propagation/Shadowing]

$opt(propInstance) profile [expr [expr $gridX*$gridY-1] /2] 0 1 0 0 .5

0

Initialize.tcl

set ns_ [new Simulator]

set chan_ [new $opt(chan)]

set topo_ [new Topography]

#set basic packet tracing

set tracefd [open "trace.tr" w]

set namtrace [open "dsdvapproxy.nam" w]

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $opt(width) $opt(height)

#create god object

set god_ [create-god $opt(numOfNodes)]

create topology object

$topo_ load_flatgrid $opt(width) $opt(height)

general node configuration

if { [info exists opt(propInstance)] } {

 $ns_ node-config -propInstance $opt(propInstance)

} else {

 $ns_ node-config -propType $opt(prop)

}

$ns_ node-config \

 -adhocRouting $opt(routing) \

 -llType $opt(linkLayer) \

 -macType $opt(macLayer) \

 -ifqType $opt(ifq) \

 -ifqLen $opt(lenIfq) \

 -antType $opt(ant) \

 -phyType $opt(netif) \

 -topoInstance $topo_ \

 -channel $chan_ \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF \

 -movementTrace OFF

for {set i 0} {$i < $opt(numOfNodes)} {incr i} {

 # init mobile nodes

 set node_($i) [$ns_ node]

 # disable random motion

 $node_($i) random-motion 0

 # register node.

D-20

 $god_ new_node $node_($i)

 # initial node position

 $ns_ initial_node_pos $node_($i) 10

 # init agent

 set agent_($i) [new $opt(agent)]

 # attach agent to node.

 $node_($i) attach $agent_($i)

}

set dWidth [expr 1.0*$opt(width)/[expr $gridX-1]];

set dHeight [expr 1.0*$opt(height)/[expr $gridY-1]];

for {set i 0} {$i < $gridX } {incr i} {

 for {set j 0} {$j < $gridY } {incr j} {

 set nodeId [expr $i*$gridY + $j];

 $node_($nodeId) set X_ [expr $i*$dWidth];

 $node_($nodeId) set Y_ [expr $j*$dHeight];

 $node_($nodeId) set Z_ 0.000000000000;

 }

}

for {set j 0} {$j < $numberOfPackets } {incr j} {

 $ns_ at [expr 20 + $j*1] "$agent_($centerNode) send"

}

$ns_ at [expr 30 + $numberOfPackets] "$ns_ halt"

proc stop {} {

 global ns_ tracefd

 $ns_ flush-trace

 close $tracefd

 global ns_ namtrace

 $ns_ flush-trace

 close $namtrace

}

puts "Starting Simulation..."

start simulation

$ns_ run;

WriteOutput.tcl

set graph1 [open "graph1.tex" w]

set graph2 [open "graph2.tex" w]

set topology [open "topologySize.tex" w]

set xWidth 5; # width of output

set yWidth [expr 1.0*$xWidth*$opt(height)/$opt(width)];

set dWidth [expr 1.0*$xWidth/$gridX];

set dHeight [expr 1.0*$yWidth/$gridY];

puts $topology "\\newcommand{\\topHeight}{-$yWidth}"

puts $topology "\\newcommand{\\topHeightLabel}{$opt(height)}"

puts $topology "\\newcommand{\\topWidthLabel}{$opt(width)}"

D-21

for {set i 0} {$i < $gridX } {incr i} {

 set nodeId [expr $i*$gridY + [expr $gridY-1]/2];

 if {$nodeId == $centerNode} { continue; }

 set packetReceived [$agent_($nodeId) set packetCount_];

 set packetRate [expr [expr

$packetReceived*100]/$numberOfPackets];

 puts $graph1 "[expr $i*$xWidth/[expr $gridX-1.0]] [expr

3.0*$packetRate/100]"

}

for {set i 0} {$i < $gridX } {incr i} {

 for {set j 0} {$j < $gridY } {incr j} {

 set nodeId [expr $i*$gridY +$j];

 if {$nodeId == $centerNode} { continue; }

 set packetReceived [$agent_($nodeId) set packetCount_];

 set packetRate [expr [expr

$packetReceived*100]/$numberOfPackets];

 set posX [expr $i*$dWidth-0.01]

 set posY [expr $j*$dHeight-$yWidth-1.01]

 set posX2 [expr $i*$dWidth+$dWidth+0.01]

 set posY2 [expr $j*$dHeight+$dHeight-$yWidth-0.99]

 puts $graph2 "\\fill \[black!$packetRate\] ($posX ,$posY)

rectangle ($posX2,$posY2);"

 }

}

close $graph1;

close $graph2;

close $topology;

Simulate.tcl

set opt(chan) Channel/WirelessChannel; # channel layer

set opt(netif) Phy/WirelessPhy; # physical layer

set opt(ant) Antenna/OmniAntenna; # antenna model

set opt(macLayer) Mac; # mac layer

set opt(ifq) Queue/DropTail; # message queue, ifq

set opt(lenIfq) 50; # max packet in ifq

set opt(linkLayer) LL; # link layer

set opt(routing) DumbAgent; # routing protocol

set opt(agent) Agent/NbhAgent; # simulation agent

Agent/NbhAgent set packetCount_ 0

topology

set gridX 31; # number of nodes in a horizontal line

set gridY 31; # number of nodes in a vertical line

set numberOfPackets 2000; # packets used for sending

set opt(width) 200; # topography width

set opt(height) 200; # topography height

set argArray [split $argv];

D-22

if { $argc != 1 } {

 puts "use: ns simulate.tcl <propagation file>";

} else {

 source [lindex $argArray 0];

 set opt(numOfNodes) [expr $gridX*$gridY]; # number of

mobilenodes

 set centerNode [expr [expr $opt(numOfNodes)-1] /2]

 source "initialize.tcl";

 source "writeOutput.tcl";

}

BIB-1

Bibliography

[1] Altman, E. and Jimenez, T. “NS Simulator for beginners,” Lecture Notes 2003-

2004. University de Los Andes, Merida, Venezuela and Sophia-Antipolis, France.

(Dec. 2003). URL: http://www-sop.inria.fr/members/Eitan.Altman/COURS-

NS/n3.pdf.

[2] Andel, T. R. and Yasinac, A. “On the Credibility of Manet Simulations.”

Computer, vol.39, no.7, pp.48-54. (July 2006).

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1657907&isnumber=3

4707

[3] Bains, L. “Laptop Sales Overtake Traditional Desktop PC Sales Over Holiday,”

www.Switched.com. (Jan. 2009). URL:

http://www.switched.com/2009/01/09/laptops-overtake-traditional-desktop-pcs/.

[4] Baldwin, R. CSCE 554: Performance Analysis and Design - Course slides.

Graduate School of Engineering and Management. Air Force Institute of

Technology, Wright-Patterson AFB OH. (Jun. 2009).

[5] BBCNews. “Mobile System Promises Free Calls,” BBC MMIX. (Sep. 2007).

URL:http://news.bbc.co.uk/2/hi/technology/6987784.stm.

[6] Bhandare, S., Doshi, S., Brown, T. X., and Sanghai, S. “Comparison of two

wireless ad-hoc routing protocols on a hardware test-bed,” Wireless

Communications and Networking, 2003. WCNC 2003. 2003 IEEE , vol.2, no.,

pp.1168-1173 vol.2, 20-20 March 2003.

URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1200536&isnumber=2

7029.

[7] Bhargaven, K., Gunter, C. A., Kim, M., Lee, I., Sokolsky, O., and Viswanathan,

M. “Verisim: Formal Analysis of Network Simulations,” IEEE Transactions on

Software Engineering Vol. 28, No. 2 (Feb. 2002), 129-145.

URL:http://seclab.uiuc.edu/cgunter/dist/BhargavanGKLOSV02.pdf.

[8] Braem, B. Implementatie En Evaluatie Van Ad-hoc On-Demand Distance Vector

Routing. MS Thesis. Universiteit Antwerpen, Belgium. (2004-2005).

URL:https://euterpe.cmi.ua.ac.be/~bbraem/thesis/thesis.pdf.

[9] Brown, T. X., Doshi, S., Jadhav, S., Henkel, D., and Thekkekunnel, R. “A Full

Scale Wireless Ad-hoc Network Test Bed,” Proc. of International Symposium on

Advanced Radio Technologies, Boulder, CO. (Mar. 2005).

URL:http://ecee.colorado.edu/~timxb/timxb/pubs/05isart.pdf.

[10] Cavilla, A. L., Baron, G., Hart, T. E., Litty, L., and de Lara, E. “Simplified

Simulation Models for Indoor MANET Evaluation are not Robust,” Proc.

SECON, University of Toronto. (2004). URL:

http://www.cs.toronto.edu/~delara/papers/secon2004/secon.pdf.

BIB-2

[11] Cavin, D., Sasson, Y., and Schiper, A. “On the Accuracy of MANET Simulators,”

POCM ’02. (Oct. 2002). URL:

http://portal.acm.org/citation.cfm?id=584490.584499.

[12] Chakeres, I. and Perkins, C. “Dynamic MANET On-demand (DYMO) Routing,”

IETF Internet Draft. (Feb. 2008). URL: http://ianchak.com/dymo/draft-ietf-

manet-dymo-12.txt.

[13] “Click Programming Manual,” URL:

http://www.read.cs.ucla.edu/click/progman.html.

[14] Doshi, S., Bhandare, S., and Brown, T. X. “An on-demand minimum energy

routing protocol for a wireless ad-hoc network,” SIGMOBILE Mob. Comput.

Commun. Rev. 6, 3 (Jun. 2002), 50-66. URL:

http://doi.acm.org/10.1145/581291.581300.

[15] Dzambaski, A., Trajanov, D., Filiposka, S., and Grnarov, A. “Ad hoc networks

simulations with real 3D terrains,” 15
th

 Telecommunications forum TELFOR

2007, Serbia. (Nov. 2007). URL: http://2007.telfor.rs/files/radovi/02_10.pdf.

[16] Fall, K. and Varadhan, K. “The ns Manual (formerly ns Notes and

Documentation).” The VINT Project, UC Berkeley, LBL, USC/ISI, and Xeror

PARC. URL:http://www.isi.edu/nsnam/ns/tutorial/.

[17] Frodigh, M., Johansson, P., and Larsson, P. “Wireless ad-hoc networking – The

art of networking without a network,” Ericsson Review, No. 4. (2000).

URL:http://www.ericsson.com/ericsson/corpinfo/publications/review/2000_04/fil

es/2000046.pdf.

[18] Fujimoto, R. M., Permulla, K. S., and Riley, G. F. Network Simulation. Berkeley:

Morgan & Claypool Publishers, 2007.

[19] Greis, M. “Tutorial for the Network Simulator “ns”,” Information Sciences

Institute. URL: http://www.isi.edu/nsnam/ns/tutorial/index.html.

[20] Institute of Telematics. “Visualisation of NS-2 propagation models.” Hamburg

University of Technology, Germany. URL:https://wiki.ti5.tu-

harburg.de/wsn/ns2/extension_propagation.

[21] Johnson, D., Hu, Y., and Maltz, D. “The Dynamic Source Routing Protocol

(DSR) for Mobile Ad-hoc Networks for IPv4.” RFC4728, Internet Engineering

Task Force. (Feb. 2007). URL: http://tools.ietf.org/html/rfc4728.

[22] Klein, J. Implementation of an ad-hoc routing module for an experimental

network. MS Thesis. Universität Stuttgart, Stuttgart Germany, and the Universidat

Politècnica de Catalunya, Barcelona Spain, (Apr. 2005).

URL:http://www.read.cs.ucla.edu/click/publications.

BIB-3

[23] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. “The Click

Modular Router,” ACM Trans. Comput. Syst. 18, 3 (Aug. 2000), 263-297.

URL:http://doi.acm.org/10.1145/354871.354874.

[24] Kohler, E. The Click Modular Router. Ph.D. Thesis. Massachusetts Institute of

Technology, MA. (Feb. 2001). URL: http://pdos.csail.mit.edu/papers/click:kohler-

phd/thesis.pdf.

[25] Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., and Elliott, C. “Experimental

Evaluation of Wireless Simulation Assumptions,” Dartmouth Computer Science

Technical Report TR2004-507. (Jun. 2004).

URL:http://www.cs.dartmouth.edu/reports/TR2004-507.pdf.

[26] Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., and Elliott, C. “Experimental

Evaluation of Wireless Simulation Assumptions,” MSWiM ’04. (Oct. 2004).

URL:http://cmc.cs.dartmouth.edu/cmc/papers/kotz:axioms-tr2.pdf.

[27] Kurkowski, S., Camp, T., and Colagrosso, M. "Manet Simulation Studies: The

Incredibles," SIGMobile Mobile Computing Comm. Rev., vol. 9, no. 4, pp. 50-61.

(2005). URL: http://portal.acm.org/citation.cfm?doid=1096166.1096174.

[28] Larsson, T. and Hedman, N. Routing Protocols in Wireless Ad-hoc Networks--A

Simulation Study. MS Thesis. Lulea University of Technology, Stockholm,

Sweden. URL: http://www.ietf.org/old/2009/proceedings/99mar/slides/manet-

thesis-99mar.pdf.

[29] Macker, J. and Chakeres, I. “Mobile Ad-hoc Networks (manet).” IETF MANET

Working Group. URL: http://www.ietf.org/dyn/wg/charter/manet-charter.html.

[30] Mobile Systems Laboratory. Global Mobile Information Systems Simulated

Library (GloMoSim). University of California, Los Angeles, CA.

URL:http://pcl.cs.ucla.edu/projects/glomosim/.

[31] Murthy, C. S. R. Ad-hoc Wireless Networks Architectures and Protocols. New

Jersey: Prentice Hall, 2004.

[32] Neufeld, M., Jain, A., and Grunwald, D. “Network protocol development with

NSClick,” Wireless Networking. 10, 5 (Sep. 2004), 569-581.

URL:http://portal.acm.org/citation.cfm?id=1027343.

[33] OPNET Technologies, Inc. Optimized Network Engineering Tools (OPNET).

Bethesda, MD. URL: http://www.opnet.com/.

[34] Park, V. and Corson, S. “Temporally-Ordered Routing Algorithm (TORA)

Version 1 Functional Specification,” IETF Internet-Draft. (Jul. 2001).

URL:http://tools.ietf.org/html/draft-ietf-manet-tora-spec-04.

BIB-4

[35] Pawlikowski, K., Jeong, H. D., and Lee, J.S. “On the credibility of simulation

studies of telecommunication networks,” IEEE Communications. 40(1): 132-139.

(Jan. 2002).

URL:http://www.cosc.canterbury.ac.nz/krys.pawlikowski/publications/credibility.

0101.pdf.

[36] PDOS. “The Grid Ad-hoc Networking Project.” Parallel & Distributed Operating

System Group, Massachusetts Institute of Technology, MA. URL:

http://pdos.csail.mit.edu/grid/.

[37] Perkins, C. E., Belding-Royer, E. M., and Das, S. R. “Ad-hoc On-demand

Distance Vector (AODV) Routing,” IETF Internet Draft. (Feb. 2003).

URL:http://tools.ietf.org/html/draft-ietf-manet-aodv-13.

[38] Perkins, C. E. and Bhagwat, P. “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers,” SIGCOMM 94. (Aug

1994). URL:http://www.cs.virginia.edu/~cl7v/cs851-papers/dsdv-sigcomm94.pdf.

[39] Toh, C. –K. Ad-hoc Mobile Wireless Networks: Protocols and Systems. New

Jersey: Prentice Hall, 2001.

[40] Tornquist, A. Modular and Adaptive Ad-hoc Routing in Click. MS Thesis.

University of Colorado, Colorado. (2001).

URL:http://systems.cs.colorado.edu/Networking/ModularAdhoc/adhoc.pdf.

[41] Wang, Y. “A Tutorial of 802.11 Implementation in ns-2.” MobiTec Lab, CUHK.

URL:http://www.cs.utexas.edu/~erozner/tr_ns802_11.pdf.

[42] Wireless Communications Technologies Group. “NIST DSR Model Readme

File,” National Institute of Standards and Technology. (Dec. 2000).

URL:http://www.antd.nist.gov/wctg/DSRreadme.pdf.

[43] Xiuchao, W. “Simulate 802.11b Channel within NS2.” National University of

Singapore, Singapore. (2004).

URL:http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/publication/Simul

ate80211ChannelWithNS2.pdf

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
13-06-2010

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2008 – Jun 2010

4. TITLE AND SUBTITLE

Attaining Realistic Simulations of Mobile Ad-hoc NETworks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Huber, Derek, J., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/10-11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 INTENTIONALLY LEFT BLANK

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Mobile Ad-hoc Networks (MANET) are comprised of wireless systems that communicate without the assistance of centrally managed routers or base stations.

MANET research and development has increased due to computing technologies offering smaller, faster, smarter, and more power efficient platforms to

operate on. Largely the testing and evaluation of new and existing MANET protocols has resided in simulation environments. This is due in part to the

complexities and expenses incurred when conducting real world tests. Many researchers have come to recognize that these current simulations tend to assume

away critical components of the MANET domain. These assumptions are made either to simplify the physical layer of the simulation so that the protocol can

be tested or out of necessity because the current simulation platforms are not capable of providing a more realistic physical layer simulation environment. This

thesis is focused on addressing these assumptions that affect the physical layer of the MANET protocol by gathering data in the real world and then modifying

the simulation environment to model as closely as possible to the gathered results. This modified environment is then compared to the basic MANET

simulation environment by analyzing packet delivery and propagation effects of both models.

15. SUBJECT TERMS
 Wireless Communications, Simulations, Computer Networks, Mobile Ad-hoc Networks, Click Modular Router, NS-2

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
122

19a. NAME OF RESPONSIBLE PERSON
Mark D. Silvius, Maj, USAF (ENG)

REPORT

U
ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext; e-mail: Mark.Silvius@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

